• Title/Summary/Keyword: Aphotic zone

Search Result 2, Processing Time 0.017 seconds

Vertical Profiles of Alkaline Phosphatase Activity in Dam Reservoirs and its Relation with Microbial Parameters (댐 저수지에서 alkaline phosphatase 활성의 수직변화와 미생물 요인들과의 상관관계)

  • Nakagawa, Ayumi;Kagawa, Hisanori;Hiroshi, Hirotani
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.406-410
    • /
    • 2004
  • The alkaline phosphatase activity (APA) of two dam reservoirs and inflowing streams were measured monthly in 2000. During summer months in 2001, the vertical profiles of APA and related parameters were also examined in one of the reservoirs. The APA was relatively high during the summer season in the epilimnion while it was almost invariable in the hypolimnion. A small increase in APA was observed at just above the bottom. The APA fluctuation was independent of the concentration of soluble reactive phosphorus. It was assumed that APA is not indicative of the phosphorus availability status. An examination of size-fractionated samples suggested that APA in reservoirs was attached to particles larger than $0.4{\mu}m$, whereas in streams it existed in a dissolved form. There was a positive significant correlation between chlorophyll a concentration and APA in the photic zone. In the aphotic zone, APA correlated positively with the colony count of heterotrophic bacteria, but not with microscopic total bacterial counts.

Is Nitrogen Uptake Rate by Phytoplankton below the Euphotic Zone in the Yellow Sea Considerable? (황해의 무광대에서 식물플랑크톤에 의한 질소 섭취율은 상당한가?)

  • Yang, Sung-Ryull;Shim, Jae-Hyung;Chung, Chang-Soo;Hong, Gi-Hoon;Pae, Se-Jin;Yang, Dong-Beom;Park, Myung-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • To determine whether nitrogen (N) uptake by phytoplankton below the euphotic zone in the Yellow Sea is considerable, we measured the uptake rates of nitrate and ammonium using $^{15}N$-labeled stable isotope $K^{15}NO_{3}$ and $^{15}NH_{4}Cl$, in May and November 1997 at total 10 stations. Depth-integrated uptake rates of nitrate and ammonium over the euphotic zone during this study ranged from 1.8 to 15.3 mg N $m^{-2}$ $d^{-1}$ and from 5.0 to 132.2 mg N $m^{-2}$ $d^{-1}$, respectively, and ammonium uptake predominated at 9 of 10 stations (1.9-19.4 fold). Depth-integrated uptake rates of nitrate and ammonium over the whole water column ranged from 2.9 to 22.0 mg N $m^{-2}$ $d^{-1}$ and from 15.7 to 175.5 mg N $m^{-2}$ $d^{-1}$, respectively. The significant proportion of whole water column N uptake was attributed to uptake by phytoplankton below the euphotic zone, ranging from 13.0 to 86.2% for nitrate and from 13.8 to 67.8% for ammonium, indicating that phytoplankton N uptake below the euphotic zone is at times considerable in the study area. The results suggest that when phytoplankton below the euphotic zone in the Yellow Sea are again entrained into the euphotic zone by a certain physical forcing such as turbulent mixing and the vertical movement of thermocline, these episodic events may significantly affect the material fluxes within the euphotic zone. Furthermore, the results suggest that a portion of regenerated production estimated from $^{15}N$-ammonium uptake should be included in new production estimates, which otherwise could be underestimated in the Yellow Sea.