• Title/Summary/Keyword: Apatite-forming ability

Search Result 10, Processing Time 0.02 seconds

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF

Corrosion Analysis and Apatite Forming Ability of Ti and Ti-Alloys in SBF Solution (Ti과 Ti합금의 SBF에서 Apatite 형성 관찰 및 부식거동 테스트)

  • Lee Seung-Woo;Kim Yun-Jong;Choi Je-Woo;Park Joong-Keun;Kim Won-Soo;Kim Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.671-677
    • /
    • 2005
  • Ti and Ti alloys are known to have excellent corrosion properties, which is an important aspect for biocompability of these implants in human body. In our study, four types of samples (Cp-Ti, Ti-6Al-4V, $0.5wt.\%$ Fe-Ti and ECAP Ti) were tested for their apatite forming ability and corrosion properties. The micropolished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. Each samples was gently washed with distilled water and heat-treated at 600"C for 1 hour. The heat-treated samples were soaked in Simulated Body Fluid (SBF) solution at $36.5^{\circ}C$ in an incubator for different period of time. The test revealed that $0.5 wt.\%$ Fe-Ti showing faster apatite growth on the surface (7th day) compared to other samples. Polarization curve test (PCT) was also carried out to determine the corrosion resistance of each samples in SBF solution. ECAP-Ti showed highest corrosion resistance compared to any other samples. $0.5wt.\%Fe-Ti$ showed higher corrosion potential and corrosion current compared to other samples.

Fabrication of Porous 3-Dimensional Ti Scaffold and Its Bioactivity by Alkali Treatment (다공성 3차원 Ti 지지체의 제조 및 알카리처리에 따른 생체활성 평가)

  • An, Sang-Hyun;Kim, Seung-Eon;Kim, Kyo-Han;Yun, Hui-Suk;Hyun, Yong-Taek
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.362-368
    • /
    • 2009
  • Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66$\sim$72% and $300\sim400\;\mu$m, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.

Preparation of bioactive materials by crystallization sintering (결정화 소결에 의한 생체활성재료의 제조)

  • 명중재;이안배;정용선;신건철;김호건
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.169-178
    • /
    • 1998
  • The crystal phases precipitated in various compositions glass of CaO-$SiO_2-P_2O_5$ system, were identified by XRD. E composition (CaO 49.4, $SiO_2\;36.8,\;P_2O_5$ 8.8 wt%) glass in which both apatite(($Ca_{10}(PO_4)_6O$ and $\beta$-wollastonite($CaSiO_3$) crystals would precipitate by heating, was selected as an experimental composition to prepare the glass ceramics with high bending strength and good bioactivity to the living bone. Glass powders of E composition were unidirectionally crystallized at $1050^{\circ}$C in the temperature-gadient furnace and the resultant glass ceramics were characterized. Bending strength of the glass ceramics was also measured. To investigate the bond forming ability between the glass ceramics and living bone tissue, soaking test of glass ceramics in simulated body fluid was carried out. Densed glass ceramics composed of apatite and $\beta$-wollastonite crystal were prepared by unidirectional crystallization under the optimum conditions. (2 0 2) plane of $\beta$-wollastonite crystals tended to grow perpendicularly to the crystallization direction. Average bending strength of this glass ceramics was 186.9 MPa, higher than that of the glass ceramics prepared by isothermal (not directional) crystallization In soaking test, a thin layer of apatite crystallite was formed on surface of the glass ceramics in 3 days. Apatite crystals formed on the glass ceramics could be act a role to make the chemical bond between the glass ceramics and living bone tissue.

  • PDF

Evaluate the Suitability of MC3T3 Cells to Antibacterial Ag-30CaO·70SiO2 Gel (항균성 Ag-30CaO·70SiO2 Gel의 MC3T3 세포적합성에 관한 연구)

  • Yoon, Geum-Jae;Ryu, Jae-Kyung;An, Eung-Mo;Kim, Yun-Jong;Kim, Taik-Nam;Noh, In-Sup;Cho, Sung-Beck
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.671-676
    • /
    • 2014
  • It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel ($Ag-30CaO{\cdot}70SiO_2$ gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological $Ag-30CaO{\cdot}70SiO_2$ is tested. This was done to impart antimicrobial activity to the $30CaO{\cdot}70SiO_2$. Ag ion was added during sol-gel synthesis to replace the $H_2O$ added during the making of the $30CaO{\cdot}70SiO_2$ gel, which has silver solutions of various concentration. After the sol-gel process, 1N-$HNO_3$ solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-$SiO_2$ gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is $Ag-30CaO{\cdot}70SiO_2$ gel.

A study of apatite formation on NaOH treated Ti alloys with different Iron content (NaOH 처리한 Fe 첨가된 Ti alloys의 아파타이트 형성관찰)

  • Seung-Woo Lee;Yun-Jong Kim;Jae-Gyeoung Ruy;Taik-Nam Kim
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2004
  • Metals, ceramics and polymers are widely used as bioimplant materials. However, Ti and Ti alloys are widely used because of its high strength to weight ratio and good biocompatibility when implanted in the body. In this experiment, Ti alloys of Grade-4 (gr4), 0.2 wt % Fe, 0.5 wt % Fe and 2 wt % Fe were studied for their surface morphology and HAp forming ability on the metal substrate for different treatments. Intially, the samples were mechanically polished on silicone carbide paper (No.-2000). The polished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. The NaOH treated samples were washed gently with distill water and dried at $40^{\circ}C$ for 1 day. The dried samples were heated in air at $600^{\circ}C$ for 1 hour. The surface morphology of these samples were studied using SEM. The SEM studies showed network of pores in all samples. These samples were immersed in stimulated body fluids (SBF) kept at $36.5^{\circ}C$ for different periods over the length of 1 to 14 days. The apatite formation was confirmed on all Ti-alloys using EDAX.

  • PDF

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Reinforcement of Calcium Phosphate-Calcium Sulfate Injectable Bone Substitute Using Citric Acid and Hydroxypropyl-Methyl-Cellulose

  • Thai, Van Viet;Kim, Min-Sung;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.45.1-45.1
    • /
    • 2009
  • In this study, we investigated a calcium phosphate-calcium sulfate injectable bone substitute (IBS) with organic reinforcement of chitosan, citric acid and hydroxypropyl-methyl-cellulose (HPMC). The powder component of IBS consisted of tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dihydrate (CSD). The liquid component was a solution of citric acid and chitosan. The effect of HPMC in terms of setting time, compressive strength and apatite forming ability on this IBS was investigated. The mass content of HPMC in liquid phase was varied in array of 0%, 2%, 3% and 4%. The setting times obtained between 20 and 45 minutes. Compressive strength was achieved over 20 MPa after incubation at 370C and in 100% humidity for 28 days. Porosities were evaluated in relation with compressive strength. Elastic moduli of the 28 days after-incubation IBS were obtained around 4GPa

  • PDF

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.