Oh, Seok Jin;Jang, Minik;Nam, Ki Taek;Kim, Seok-Yun
Journal of the Korean Society of Marine Environment & Safety
/
v.23
no.7
/
pp.885-892
/
2017
We estimated the limiting nutrient and DIP limiting history based on alkaline phosphatase (APase) activity during the spring of 2017 in the Southern Sea, Korea. In the frontal area, concentration of dissolved inorganic phosphorus (DIP), dissolved inorganic nitrogen (DIN): DIP ratio and Chlorophyll a (Chl-a) were < $0.2{\mu}M$, 23.2 and $2.2{\mu}g/L$, respectively, indicating high productivity despite DIP limiting. The relationship between APase and DIP indicates that the study area had limited DIP because of a strongly reverse correlation (r= -0.81; P<0.001). Relationship between APase and Chl-a (r=0.61, p<0.001) also indicated that APase may have been induced by phytoplankton (ca. 60 %) and bacteria (ca. 40 %). In DIP limiting history in this study area, frontal area and non-frontal areas might have induced long-term DIP limitation and the recent relief from DIP-limitation, respectively, based on distributions of dissolved APase and particulate APase. Thus, these results suggest that by measuring the enzyme that hydrolyzes organic matter such as APase in frontal area, it is possible to estimate temporal and spatial characteristics of limiting nutrient, thereby improving our understanding of biogeochemistry cycles.
Singh, Jeet Bahadur;Vyas, Deepak;Kumar, Har Darshan
Journal of Microbiology and Biotechnology
/
v.7
no.2
/
pp.127-131
/
1997
Alkaline phosphatase (APase) was found to be inducible in Anabaena sp. strain CA Growth was less than control in presence of most amino acids except glycine and serine, but most amino acids enhanced APase activity. Highest APase activity was recorded in tyrosine supplemented culture followed by hydroxyproline, cystein, valine and glutamic acid. Threonine supplemented material showed lowest APase level (1.8 nmol/mg protein/min). Lactose, glucose, sodium pyruvate and succinate stimulated growth but not APase activity. APase activity was high in the presence of sucrose, mellibiose, mannitol, arabinose, maltose and sorbose, even though the growth in these supplements was less than in control. Organic phosphate sources supported good growth of the organism. Best growth occurred in presence of inorganic phosphate, adenosine diphosphate, fructose 1,6-diphosphate or ribulose 1,5-diphosphate, followed by other phosphorus sources tested. APase activity in presence of any of the organic phosphate sources was 3 to 5 fold low as compared to phosphate limited culture. Also, there was no APase activity in cultures grown on inorganic phosphate. These data indicate that most amino acids and a few carbohydrates (sucrose, mellibiose, arabinose and sorbose) are suitable for APase production. Lactose, glucose, pyruvate or succinate may be used as a carbon source during photoheterotrophic growth of the cyanobacterium. Glycine and serine are preferred nitrogen sources for its growth. Phosphate repressible APase activity has been found in Anabaena sp. strain CA.
We investigated variations in alkaline phosphatase (APase) activity and alkaline phosphatase hydrolyzable phosphorus (APHP) in northern Gamak Bay from September to December 2009. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) decreased gradually, and the DIN/DIP ratio was higher than the Redfield ratio (16) based on molecular concentrations during most of the observation period. The total APase (T-APase) activity increased with decreasing DIP concentration; i.e., the Relationship between T-APase and DIP showed a high negative correlation (r=-0.80, P<0.001), with APase activity being a good indicator of DIP limiting the Redfield ratio. The T-APase was positively correlated with the concentration of chlorophyll a (r=0.73, P<0.001). This suggests that a major portion of APase activity in northen Gamak Bay seawater is attributed to phytoplankton. The proportion of APHP among dissolved organic phosphorus (DOP) was low in September and high in November. Thus, APase-producing phytoplankton may be able to grow by utilizing APHP as a phosphorus source in autumn when DIP is limiting. Thus, APase activity and the use of DOP by phytoplankton may play an important role in the growth of phytoplankton under DIP limiting conditions such as those of northern Gamak Bay.
Journal of The Korean Society of Grassland and Forage Science
/
v.17
no.3
/
pp.285-292
/
1997
This study was conducted to obtain the transgenic Brnssica napus plants with tobacco Apase gene using the binary vector system of Agrobacteriurn fumefociens. The results obtained were summarized as follows: A repressible acid phosphatase gene of Saccharon~yces cerevisiae, pho105 was used for screening of tobacco Apase cDNA. In order to identify Apase gene in tobacco genome, Southern blot analysis was pcrformed and the Apase gcnc may be present as a single copy, or at most two or three copies, in tobacco genome. To isolate the tobacco Apase gene, tobacco cDNA library was constructed using purifed mRNA from -Pi treated tobacco root and the plaque forming unit of the library was 2.8 x $10^5$ pfu/m${\ell}$, therefore the library might cover all expressed mRNAs. Using pho5 as a probe. tobacco Apase cDNA was cloned, and restriction mapping and Southern blot analysis of cDNA insert were revealed that the 3.6 kb cDNA contained tobacco acid phosphatase cDNA. Plasmid pGA695 -tcAPl was constructed by subcloning tobacco Apase cDNA into the Hind site of pGA695 with 35s promoter which can be expressed constitutively in plants. The Brassica napus cotyledonary petioles were cocultivated with the ,4 grobacteriunz and transferred to the selection medium. The transformed and regenerated plants were transplanted to soil medium. Southern blot analysis was done on the transformed plants, and it was confirmed that a foregin gene was stably integrated into the genonies of B. nnpus plants.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.15
no.1
/
pp.16-24
/
2010
Utilization of dissolved organic phosphorus (DOP) and alkaline phosphatase (APase) activity by Skeletonema costatum, Chaetoceros didymus, Alexandrium tamarense and Heterosigma akashiwo under the phosphorus deficient condition were examined in the laboratory. S. costatum, C. didymus, A. tamarense and H. akashiwo could make use of phosphomonoester and nucleotide compounds for the growth of them as a phosphorus source. APase activity of S. costatum, C. didymus, A. tamarense and H. akashiwo began to be activated at dissolved inorganic phosphorus (DIP) concentrations less than $0.30\;{\mu}M$, $0.33\;{\mu}M$, $2.04\;{\mu}M$ and $0.63\;{\mu}M$ respectively, and their maximum APase activity were $0.01\;pmol\;cell^{-1}\;hr^{-1}$, $0.11\;pmol\;cell^{-1}\;hr^{-1}$, $1.63\;pmol\;cell^{-1}\;hr^{-1}$ and $0.19\;pmol\;cell^{-1}\;hr^{-1}$, respectively. Although each phytoplankton species displayed different APase activity for DOP utilization, their maximum APase activities were higher than maximum phosphorus uptake rates, inferring that these species might be able to keep growing under DIP-limited conditions thought utilizing effectively the hydrolized product of DOP. This result also implies that utilization of DOP might contribute to not only the growth of red tide forming phytoplankton but also the interspecific competition among phytoplankton species in coastal environments.
Acid phosphatases (APases) play a role in the release of phosphate in organic complexes in soil. We investigated tissue- and isoform-specific responses of APases to phosphorus (P) deficiency in three rice genotypes; Dasan-byeo, Sobi-byeo, and Palawan. The levels of shoot APase activity per protein were similar in the three genotypes. They significantly decreased with P deprivation that was longer than seven days. Root APase activity per protein was two- to three-fold higher in Dasan than in Sobi and Palawan. In all genotypes the APase activity increased in P-deficient plants, but the increase was higher in Sobi and Palawan. After 21 days of P deprivation, secreted APase activity increased more than eight-fold in Dasan and two-fold in Sobi and Palawan. Isoform profiles of shoot and root APases were most diverse in Dasan. The activities of the major isoforms in P-deficient shoots decreased in all three genotypes. Depending on the genotypes, further increases in constitutive isoforms and new induction of one to four isoforms occurred in P-deficient roots. The results indicate that tissue and genotype differences in the response of APase to P deficiency are primarily facilitated by the different responses of the isoforms.
- I aimed to isolate trans-acting factors involved in the basal expression level of eukaryotic genes. One of the yeast histidine biosynthetic gene, HIS5 was taken as a model for this study. HIS5 gene has a substantial basal level in amino acid rich medium and is derepressed if starved for any single amino acid. The derepression is mediated by cis-acting DNA sequences 5'-TGACTC-3' found in 5' non-transcribed region of the gene and trans-acting factors including GCN4 as positive factor and its negative factor GCDI 7, and GCNZ as a negative factor of GCD17. I first investigated the role of these trans-acting factors in HIS5 basal expression level by using HIS5-pH05 fusion in which expression of pH05 gene encoding inorganic phosphate-repressible acid phosphatase (APase) is regulated by HIS5 promoter. Strain with gcn2 or gcn4 mutation showed 3 to 4 fold lower APase activity than wild type. The level of APase activity was similar in gcn2 and gcn4 mutants. Trans-acting factors involved in basal level were identified by isolating 14 mutants showing increased expression of HISSPH05 fusion from gcn4 background. All the mutants carry a single nuclear recessive mutation and fall into four complementation groups, designated as bell (basal expression level), be12, be23 and be14.
High-level expression of Thermus caldophilus GK24 alkaline phosphatase (Tca APase) was achieved in Escherichia coli using the pET-based expression plasmids, pEAP1 and pEAP2. In the case of plasmid pEAP2, the signal peptide region of Tca APase was replaced by the PelB leader peptide of expression vector pET-22b(+). Furthermore, the expression level was somewhat higher than that of plasmid pEAPl. A rapid purification procedure of Tca APase overproduced in E. coli was developed which involved heating to denature E. coli proteins followed by HiTrap Heparin HP column chromatography. Optimal temperature and pH and $Mg^{2+}$ dependence of the recombinant Tca APase were similar to those of native enzyme isolated from T. caldophilus GK24.
Lawsone methyl ether (LME. 2-methoxy-1, 4-naphthoquinone) is a natural compound found in balsaminaceae. In this study the effect of LME on the release of renal dipeptidase (RDPase) and alkaline phosphatase (APase) known as glycosylphosphatidylinositol (GPI) anchored proteins was examined from the renal proximal tubules. Compared with control, LME (0.5mM) increased RDPase release (218%) and APase release (135%). The increase of RDPase release by LME showed concentration-dependent effect but the release pattern of APase did not. (omitted)
The gene encoding Thermus sp. T351 alkaline phosphatase (T351 APase) was cloned and sequenced. The gene consisted of 1,503 bp coding for a protein with 500 amino acid residues including a signal peptide. The deduced amino acid sequence of T351 APase showed relatively low similarity to other Thermus APases. The T351 APase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21 (DE3). The expressed enzyme was purified by heat treatment, and $UNO^{TM}$ Q and $HiTrap^{TM}$ Heparin HP column chromatographies. The purified enzyme exhibited high activity at extremely alkaline pHs, reaching a maximum at pH 12.0. The optimum temperature of the enzyme was $80^{\circ}C$, and the half-life at $85^{\circ}C$ was approximately 103 min. The enzyme activity was found to be dependent on metal ions: the addition of $Mg^{2+}$ and $CO^{2+}$ increased the activity, whereas EDTA inhibited it. With p-nitrophenyl phosphate as the substrate, T351 APase had a Michaelis constant ($K_{m}$) of $3.9{\times}10^{-5}M$. The enzyme catalyzed the hydrolysis of a wide variety of phosphorylated compounds.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.