• 제목/요약/키워드: Antitumor efficacy

검색결과 111건 처리시간 0.028초

Active hexose correlated compound potentiates the antitumor effects of low-dose 5-fluorouracil through modulation of immune function in hepatoma 22 tumor-bearing mice

  • Cao, Zhiyun;Chen, Xuzheng;Lan, Lan;Zhang, Zhideng;Du, Jian;Liao, Lianming
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: A variety of immunomodulators can improve the efficacy of low-dose chemotherapeutics. Active hexose correlated compound (AHCC), a mushroom mycelia extract, has been shown to be a strong immunomodulator. Whether AHCC could enhance the antitumor effect of low-dose 5-fluorouracil (5-FU) via regulation of host immunity is unknown. MATERIALS/METHODS: In the current study Hepatoma 22 (H22) tumor-bearing mice were treated with PBS, 5-FU ($10mg{\cdot}kg^{-1}{\cdot}d^{-1}$, i.p), or AHCC ($360mg{\cdot}kg^{-1}{\cdot}d^{-1}$, i.g) plus 5-FU, respectively, for 5 d. $CD^{3+}$, $CD^{4+}$, $CD^{8+}$, and NK in peripheral blood were detected by flow cytometry. ALT, AST, BUN, and Cr levels were measured by biochemical assay. IL-2 and $TNF{\alpha}$ in serum were measured using the RIA kit and apoptosis of tumor was detected by TUNEL staining. Bax, Bcl-2, and TS protein levels were measured by immunohistochemical staining and mRNA level was evaluated by RT-PCR. RESULTS: Diet consumption and body weight showed that AHCC had no apparent toxicity. AHCC could reverse liver injury and myelosuppression induced by 5-FU (P < 0.05). Compared to mice treated with 5-FU, mice treated with AHCC plus 5-FU had higher thymus index, percentages of $CD^{3+}$, $CD^{4+}$, and NK cells (P < 0.01), and ratio of $CD^{4+}$/$CD^{8+}$ (P < 0.01) in peripheral blood. Radioimmunoassay showed that mice treated with AHCC plus 5-FU had the highest serum levels of IL-2 and $TNF{\alpha}$ compared with the vehicle group and 5-FU group. More importantly, the combination of AHCC and 5-FU produced a more potent antitumor effect (P < 0.05) and caused more severe apoptosis in tumor tissue (P < 0.05) compared with the 5-FU group. In addition, the combination of AHCC and 5-FU further up-regulated the expression of Bcl-2 associated X protein (Bax) (P < 0.01), while it down-regulated the expression of B cell lymphoma 2 (Bcl-2) (P < 0.01). CONCLUSIONS: These results support the claim that AHCC might be beneficial for cancer patients receiving chemotherapy.

Antitumor Effect of Schizandrin by Inhibiting Angiogenesis (Schizandrin의 신혈관형성억제에 의한 항암효과)

  • Yoon, Mi So;Kim, Do Yoon;Yu, Ho Jin;Park, Joo-Hoon;Jang, Sang Hee;Won, Kyung-Jong;Kim, Bokyung;Lee, Hwan Myung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제26권5호
    • /
    • pp.687-692
    • /
    • 2012
  • Schizandra chinensis extract has been known to possess a variety of efficacy including antitumor. However, it remains unclear how schizandrin, which is a major biological active ingredient of Schizandra chinensis, exerts antitumor effect. This study was designed to investigate the mechanism by which schizandrin inhibits tumor growth and metastasis. In in vivo test using tumor model mice injected with B16BL6 cell line, mice treated with 10 and 100 ${\mu}g/ml$ schizandrin showed a significant inhibition by $73.79{\pm}6.43%$ and $90.46{\pm}1.72%$, respectively, compared with positive tumor controls. Schizandrin did not exert a significant toxicity for the normal cells (HUVECs) and tumor cell lines (A549, B16BL6, Du145, Huh7). Treatment with schizandrin at 10 and 100 ${\mu}g$/head significantly inhibited the tumor-induced angiogenesis by $68.04{\pm}32.21%$ and $103.8{\pm}34.99%$ compared with the positive control group, respectively. Using in vivo lung metastasis model, tumor metastasis assay revealed that 10 and 100 ${\mu}g$/head schizandrin significantly decreased the metastatic lung tumor by $37.51{\pm}8.15%$ and $75.53{\pm}4.38%$ compared with positive controls, respectively. On the other hand, schizandrin did not affect the adherence of B16BL6 cell line to extracellular matrix protein. These results demonstrate that schizandrin exerts inhibitory effect on tumor growth and metastasis by inhibiting angiogenesis. This study thus suggest that schizandrin may be a candidate molecule target for cancer drug development.

Effect of Extracellular Cations on the Cehmotherapeutic Efficacy of Anticancer Drugs

  • Park, Sun-Mi;Han, Sang-Bae;Hong, Dong-Ho;Lee, Chang-Woo;Park, Se-Hyung;Jeon, Young-Jin;Kim, Hwan-Mook
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.59-65
    • /
    • 2000
  • Cancer development and the efficiency of chemotherapy relies on the patients calcium-related pathological status such as hyper- or hypocalcemica. In the present study, we investigated the effect of extracellular cations such as calcium and magnesium on the therapeutic efficacy of antitumor drugs. The analytic parameters used were cellular drug uptake/excretion and the chemosensitivity of the human breast cancer cell lines, MCF7 and MCF7/ADR. Both calcium and magnesium ions decreased the membrane permeability of cancer cells, which was determined bycell size analysis. These divalent ions also lowered the drug uptake and the cytoplasmic levels of rhodamine 123 and adriamycin, suggesting that they might interfere with the diffusion of these drugs by modifying the physical properties of the cytoplasmic membrane. The acute cytotoxicity of adriamycin after a short period of incubation correlated with changes in its cytoplasmic level. Our results indicate that these extracellular cations might play an important role in the therapeutic activities of anticancer drugs in cancer patients. These results also provide insight a new aspect of chemotherapy, because they suggest that the therapeutic dose of anti-cancer drugs should be modified in cancer-bearing patients presenting with abnormal blood calcium levels.

  • PDF

Potential Therapeutic Efficacy of Curcumin in Liver Cancer

  • Dai, Xin-Zheng;Yin, Hai-Tao;Sun, Ling-Fei;Hu, Xiang;Zhou, Chong;Zhou, Yun;Zhang, Wei;Huang, Xin-En;Li, Xiang-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3855-3859
    • /
    • 2013
  • Purpose: Liver cancer, one of the most common cancers in China, is reported to feature relatively high morbidity and mortality. Curcumin (Cum) is considered as a drug possessing anti-angiogenic, anti-inflammation and anti-oxidation effect. Previous research has demonstrated antitumor effects in a series of cancers. Materials and Methods: In this study the in vitro cytotoxicity of Cum was measured by MTT assay and pro-apoptotic effects were assessed by DAPI staining and measurement of caspase-3 activity. In vivo anti-hepatoma efficacy of Cum was assessed with HepG2 xenografts. Results: It is found that Cum dose-dependently inhibited cell growth in HepG2 cells with activation of apoptosis. Moreover, Cum delayed the growth of liver cancer in a dose-dependent manner in nude mice. Conclusions: Cum might be a promising phytomedicine in cancer therapy and further efforts are needed to explore this therapeutic strategy.

Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo -In vitro and in vivo Anticancer Activity of bio-Pt NPs-

  • Bendale, Yogesh;Bendale, Vineeta;Natu, Rammesh;Paul, Saili
    • Journal of Pharmacopuncture
    • /
    • 제19권2호
    • /
    • pp.114-121
    • /
    • 2016
  • Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached $70-75mm^3$, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer.

Efficacy of Poly-Gamma-Glutamic Acid in Women with High-Risk Human Papillomavirus-Positive Vaginal Intraepithelial Neoplasia: an Observational Pilot Study

  • Koo, Yu-Jin;Min, Kyung-Jin;Hong, Jin-Hwa;Lee, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1163-1169
    • /
    • 2015
  • Poly-gamma-glutamic acid (γ-PGA) is a natural polymer that is synthesized by Bacillus species and has been reported to have antitumor activity. The aim of this study was to investigate the effect of γ-PGA on the treatment of vaginal intraepithelial neoplasia (VAIN). A retrospective observational study on γ-PGA therapy for biopsy-proven VAIN was conducted. The efficacy was assessed by evaluating the results of Pap cytology and the viral load of high-risk HPV at three time points: at enrollment, and at the first and second post-treatment visits. Of 17 patients treated with γ-PGA, only 12 patients who had a high-risk HPV infection were included in the analysis. Histology was VAIN1 in seven patients, VAIN2 in two patients, and VAIN3 in three patients. γ-PGA was administered for newly diagnosed VAIN in five (41.7%) patients and persistent VAIN in seven (58.3%) patients for the mean time of 4.5 months. At the first and second post-treatment visits, cytological regression was observed in five (41.7%) and six (50%) patients, respectively. Regarding the HPV load, the overall response rate was 66.7%, and the mean level was 670.6 ± 292.5 RLU at the first follow-up, which was lower than the initial viral load of 1,494.8 ± 434.5 RLU (p = 0.084). At the second follow-up, the overall response rate was 58.3%, and the mean viral load level was 924.2 ± 493.7 RLU. γ-PGA may be helpful for the cytological regression and reduction of viral load in patients with high-risk HPV-positive VAIN, suggesting that γ-PGA is a promising treatment option for primary or persistent VAIN.

The Effects of Gokgisaeng on Anti-inflammation and Rat C6 Glioma Cell Migration (곡기생(槲寄生)의 항염증 효능 및 암세포 이주저해에 미치는 영향)

  • Kim, Hyun-Young;Jang, Soo-Young;Jeong, Ji-Cheon;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • 제34권1호
    • /
    • pp.31-45
    • /
    • 2013
  • Objectives : Gokgisaeng (Korean mistletoe) is used for the treatment of inflammatory and cancer diseases in traditional Korean medicine and its major component lectins have been reported to induce nitric oxide (NO) in RAW 264.7 macrophages, and also induce apoptosis of various types of cancer cells, although its modulatory effects on cancer cell migration and macrophage activation is poorly understood. The aim of this study is to clarify molecular mechanisms of action responsible for the anti-inflammatory and antitumor migration potentials of Korean mistletoe extract (KME). Methods : We investigated the anti-inflammatory activity of KME on NO production and inducible nitric oxide synthase (iNOS) expression by lipopolysaccharide (LPS) in both RAW 264.7 macrophages and rat C6 glioma cells, and also evaluated inhibitory efficacy on glioma cell growth and migration. For assessment, XTT assay, nitrite assay, RT-PCR, scratch-wound and Boyden chamber assay, and western blot analysis were performed. Results : Previously reported, unlike the efficacy of Gokgisaeng lectin, KME inhibited NO production and iNOS expression, and suppressed pro-inflammatory mediators including IL-$1{\beta}$, IL-6, COX-2, iNOS in LPS-stimulated RAW 264.7 cells. Furthermore, KME suppressed tumor cell growth and migration, and it also inhibited LPS-induced NO release and iNOS activation by down-regulating expression of protein kinase C (PKC) and phosphorylation of ERK in C6 glioma cells. Conclusions : Our research findings provide evidence that KME can play a significant role in blocking pro-inflammatory reaction and malignant progression of tumors through the suppression of NO/iNOS by down-regulating of inflammatory signaling pathways, PKC/ERK.

Anti-tumor Efficacy of a Hepatocellular Carcinoma Vaccine Based on Dendritic Cells Combined with Tumor-derived Autophagosomes in Murine Models

  • Su, Shu;Zhou, Hao;Xue, Meng;Liu, Jing-Yu;Ding, Lei;Cao, Meng;Zhou, Zhen-Xian;Hu, Hong-Min;Wang, Li-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3109-3116
    • /
    • 2013
  • The majority of hepatocellular carcinoma (HCC) patients have a poor prognosis with current therapies, and new approaches are urgently needed. We have developed a novel therapeutic cancer vaccine platform based on tumor cell derived autophagosomes (DRibbles) for cancer immunotherapy. We here evaluated the effectiveness of DRibbles-pulsed dendritic cell (DC) immunization to induce anti-tumor immunity in BALB/c mouse HCC and humanized HCC mouse models generated by transplantation of human HCC cells (HepG2) into BALB/c-nu mice. DRibbles were enriched from H22 or BNL cells, BALB/c-derived HCC cell lines, by inducing autophagy and blocking protein degradation. DRibbles-pulsed DC immunization induced a specific T cell response against HCC and resulted in significant inhibition of tumor growth compared to mice treated with DCs alone. Antitumor efficacy of the DCs-DRibbles vaccine was also demonstrated in a humanized HCC mouse model. The results indicated that HCC/DRibbles-pulsed DCs immunotherapy might be useful for suppressing the growth of residual tumors after primary therapy of human HCC.

Antitumor profiles and cardiac electrophysiological effects of aurora kinase inhibitor ZM447439

  • Lee, Hyang-Ae;Kwon, Miso;Kim, Hyeon-A;Kim, Ki-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.393-402
    • /
    • 2019
  • Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with $IC_{50}$ in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect $I_{Na}$, $I_{Ks}$ or $I_{K1}$, but decreased $I_{hERG}$ in a dose-dependent manner ($IC_{50}$: $6.53{\mu}M$). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to $3{\mu}M$, but it at $10{\mu}M$ induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

In Vitro Cytotoxicity of a Novel Platinum(II) Coordination Complex Containing Diaminocyclohexane and Dichloropropane

  • Rho, Young-Soo;Chang, Sung-Goo;Lee, Woo-Tae;Jung, Jee-Chang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.359-366
    • /
    • 2001
  • We have synthesized a novel platinum(II) coordination complex containing cis-1,2-diaminocyclohexane (DACH) as a carrier ligand and 1,3-dichloropropane (DCP) as a leaving group. A new series of [Pt(cis- DACH)(DCP)](PC) was evaluated for its cytotoxic activity on MKN-45 human gastric adenocarcinoma cells and normal primary cultured kidney cells. The new platinum complex has demonstrated high efficacy in the cytotoxicity against MKN-45/P, MKN-45/ADM and MKN-45/CDDP cell-lines. The cytotoxicity of PC against rabbit proximal renal tubular cells, human renal cortical cells and human renal cortical tissues, determined by MTT assay, the $[^3H]-thymidine$ uptake and glucose consumption tests, was found to be quite less than those of cisplatin. Based on these results, this novel platinum(II) coordination complex appears to be better for improving antitumor activities with low nephrotoxicity and is a valuable lead in the development of new, clinically available anticancer chemotherapeutic agents.

  • PDF