• Title/Summary/Keyword: Antioxidant Action

Search Result 345, Processing Time 0.026 seconds

Inhibitory effects of artemether on collagen-induced platelet aggregation via regulation of phosphoprotein inducing PI3K/Akt and MAPK

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.167-172
    • /
    • 2022
  • Pathophysiological reaction of platelets in the blood vessel is an indispensable part of thrombosis and cardiovascular disease, which is the most common cause of death in the world. In this study, we performed in vitro assays to evaluate antiplatelet activity of artemether in human platelets and attempted to identify the mechanism responsible for protein phosphorylation. Artemether is a derivative of artemisinin, known as an active ingredient of Artemisia annua, which has been reported to be effective in treating malaria, and is known to function through antioxidant and metabolic enzyme inhibition. However, the role of artemether in platelet activation and aggregation and the mechanism of action of artemether in collagen-induced human platelets are not known until now. In this study, the effect of artesunate on collagen-induced human platelet aggregation was confirmed and the mechanism of action of artemether was clarified. Artemether inhibited the phosphorylation of PI3K/Akt and Mitogen-activated protein kinases, which are phosphoproteins that are known to act in the signal transduction process when platelets are activated. In addition, artemether decreased TXA2 production and decreased granule secretion in platelets such as ATP and serotonin release. As a result, artemether strongly inhibited platelet aggregation induced by collagen, a strong aggregation inducer secreted from vascular endothelial cells, with an IC50 of 157.92 μM. These results suggest that artemether has value as an effective antithrombotic agent for inhibiting the activation and aggregation of human platelets through vascular injury.

Antioxidant action of Bombycis corpus extraction in renal tissues (신장조직(腎臟組織)에서 백강잠 추출물(抽出物)의 항산화(抗酸化) 작용(作用)에 관(關)한 연구(硏究))

  • Lee, Moo-Hyung;Yoon, Cheol-Ho;Jeong, Ji-Cheon
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.7 no.1
    • /
    • pp.87-98
    • /
    • 1998
  • This study was undertaken to determine whether Bombycis Corpus extract (Bom) has antioxidant action. Kidney tissues were exposed to t-butylhydroperoxide (t-BHP) to induce oxidative stress. Lipid peroxidation was estimated by measuring malondialdehyde, a product of lipid peroxidation, and cell injury was estimated by measuring lactate dehydrogenase (LDH) release in rabbit renal cortical slices. t-BHP increased lipid peroxidation and LDH release in a dose-dependent manner over the concentration range of 0.1-1 mM. Such effects of t-BHP on lipid peroxidase and LDH release were prevented by 0.5% Bom. When tissues were treated with t-BHP in the presence of various concentrations of Bom, lipid peroxidation and LDH release were dose-dependently inhibited by Bom. Bom at 1 and 2% concentrations inhibited lipid peroxidation and LDH release in normal tissues. Bom at 2% concentration increased glutathione peroxidase activity in tissues treated or untreated with 1.0 mM t-BHP. However, catalase activity was not altered by addition of Bom. Bom inhibited generation of reactive oxygen species. These results indicate that Bom inhibits lipid peroxidation and cell injury in tissues treated with or without oxidant and this effect is, at least in part, attributed to increased activity of glutathione peroxidase and a direct sacvenging action.

  • PDF

Experimental Studies on the Effect of Gamibaegi-eum

  • Kim Won-Ill
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.61-78
    • /
    • 2004
  • Objective : This study was undertaken to determine whether Gamibaegi-eum (BGU) in vitro and in vivo exerts a beneficial effect against cell injury induced by reactive oxygen species (ROS) in the human intestine. Methods : Effects of BGU in vitro on cell injury were examined using Caco-2 cells, cultured human intestinal cell line. Exposure of cells to H₂O₂ induced increases in the loss of cell viability in a time and dose-dependent fashion. Results : BGU prevented H₂O₂-induced cell death and its effect was dose-dependent over a concentration range of 0.05­1%. H₂O₂-induced cell death was prevented by catalase, the hydrogen peroxide scavenger enzyme, and deferoxamine, the iron chelator. However, the potent antioxidant DPPD did not affect H₂O₂-induced cell death. H₂O₂ increased lipid peroxidation, which was inhibited by BGU and DPPD. H₂O₂ caused DNA damage in a dose-dependent manner, which was prevented by BGU, catalase, and deferoxamine, but not DPPD. BGU restored ATP depletion induced by H₂O₂. BGU inhibited generation of superoxide and H₂O₂ and scavenged directly H₂O₂. Oral administration of mepirizole in vivo at a dose of 200mg/kg resulted in ulcer lesions in the stomach and the proximal duodenum. Pretreatment of BGU(0.1%/kg, orally) and catalase (800Units/kg, i.v.) significantly decreased the size of ulcers. Mepirizole increased lipid peroxidation in the mucosa of the duodenum, suggesting an involvement of ROS. Pretreatment of BGU and catalase significantly inhibited lipid peroxidation induced by mepirizole. Morphological studies showed that mepirizole treatment causes duodenal injury and its effect is prevented by BGU. Conclusion : These results indicate that BGU exerts a protective effect against cell injury in vitro and in vivo through antioxidant action. The present study suggests that BGU may playa therapeutic role in the treatment of human gastrointestinal diseases mediated by ROS.

  • PDF

Changes in the Quality of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) Depending on the Storage Temperature (신품종 이슬송이 버섯(Lentinula edodes GNA01)의 온도별 저장에 따른 품질 변화)

  • Choi, Duck-Joo;Lee, Yun-Jung;Choi, So-Rye;Youn, Aye-Ree
    • Korean journal of food and cookery science
    • /
    • v.32 no.5
    • /
    • pp.585-592
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the quality characteristics and antioxidant activity on consequent storage based on the temperature of new cultivar dew-drop pine mushroom (Lentinula edodes GNA01). Methods: Dewdrop Pine Mushroom were prepared under different storeage temperature (4, 10, $20^{\circ}C$). Results: Weight loss and hardness showed the least reduction rate when it was stored at $4^{\circ}C$ (p<0.05). The color value changed to dark brown at all storage temperatures during the storage period. When it was stored at $4^{\circ}C$, it maintained its initial color for a longer period than at different storage temperatures. With respect to the change in its viable cell count, the cells proliferated to less than 3.0 log CFU/g up to Ed: Please review the change. The earlier part was difficult to understand 2.83 log CFU/g until 15 days of storage at $4^{\circ}C$. On measuring the antioxidant activity of this mushroom, the polyphenol content was maintained without a large change until 9 days of storage at $4^{\circ}C$. The electron-donating action maintained high antioxidant activity, accounting for 81.99% until 12 days of storage from 83.08% during the initial storage at $4^{\circ}C$. When it was stored at $4^{\circ}C$, the sensory characteristics received the highest score among all items, such as appeaance, color, flavor and general preference, etc. Concolusion: In summary, new Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) can maintain its commercial value until the 12th day of $4^{\circ}C$ storage.

Anti-obese related pharmacological effects of standard potato protein extracts on the 45%Kcal high fat diet supplied mice

  • Kang, Su-Jin;Song, Chang-Hyun;Kim, Jong-Kyu;Chun, Yoon-Seok;Han, Chang-Hyun;Lee, Young-Joon;Ku, Sae-Kwang
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.77-107
    • /
    • 2018
  • Objectives : In present study, therefore, possible beneficial pharmacological activities of standard potato protein extracts (SPE) were observed on the mild diabetic obese mice. Methods : After end of 12 weeks of continuous oral administrations of three different dosages of SPE 400, 200 and 100 mg/kg, or metformin 250 mg/kg, analyzed the hepatoprotective, hypolipidemic, hypoglycemic, nephroprotective and anti-obesity effects, separately. In addition, liver antioxidant defense systems were additionally measured with lipid metabolism-related genes expressions and hepatic glucose-regulating enzyme activities for action mechanism. Results : All of diabetes and related complications including obesity were significantly inhibited by treatment of SPE 400, 200 and 100 mg/kg, dose-dependently, and they also dramatically normalized the hepatic lipid peroxidation and depletion of liver endogenous antioxidant defense system, the changes of the hepatic glucose-regulating enzyme activities, also changes of the lipid metabolism-related genes expressions including hepatic $AMPK{\alpha}1$ and $AMPK{\alpha}2$ mRNA expressions, dose-dependently. Especially, SPE 200 mg/kg constantly showed favorable inhibitory activities against type II diabetes and related complications as comparable to those of metformin 250 mg/kg in HFD mice, respectively. Conclusions : The present work demonstrated that SPE 400, 200 and 100 mg/kg showed favorable anti-diabetic and related complications including obesity refinement activities in HFD mice, through AMPK upregulation mediated hepatic glucose enzyme activity and lipid metabolism-related genes expression, antioxidant defense system and pancreatic lipid digestion enzyme modulatory activities.

Pharmacology of enantiomers of higenamine and related tetrahydroisoquinolines

  • Park, Min-Kyu;Huh, Ja-Myung;Lee, Young-Soo;Kang, Young-Jin;Seo, Han-Geuk;Lee, Jae-Heun;Park, Hye-Sook-Yun-;Lee, Duck-Hyung;Chang, Ki-Churl
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.04a
    • /
    • pp.3-10
    • /
    • 2004
  • Oxidative stress is a constant threat to all living organisms and an immense repertoire of cellular defense systems is being employed by most pro- and eukaryotic systems to eliminate or to attenuate oxidative stress. Ischemia and reperfusion is characterized by both a significant oxidative stress and characteristic changes in the antioxidant defense. Heme oxigenase-l (HO-l) is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against ischemic injury in mammalian cells. Higenamine, an active ingredient of Aconite tuber, has been shown to have antioxidant activity along with inhibitory action of inducible nitric oxide synthase (iNOS) expression in various cells. In the present study, we investigated whether higenamine and related analogs protect cells from oxidative cellular injuries by modulating antioxidant enzymes, such as HO-l, MnSOD etc. R-form of YS-51 was the most potent inducer of HO-l in bovine endothelial cells, which inhibited apoptotic cell death by H$_2$O$_2$. HO-1 induction by YS 51 was mediated by PI3 kinase activation in which PKA- as well as PKG pathway is considered as important regulators. YS-51 also induced Mn-SOD mRNA expression by activating c-jun N-terminal kinase in endothelial cells and Hela cells. In ROS 17/2.1 cells, higenamine and enetiomers of related compounds inhibited iNOS expression by cytokine mixtures. Taken together, higenamine and related compounds can be developed as possible protective agents from oxidative cell injury or death.

  • PDF

Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells

  • Moon, Hyewon;Jang, Jung-Hee;Jang, Tae Chang;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson's disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.

Quality Changes of Low Temperature Storage and Storage Period of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) and Button Mushroom (Agaricus bisporus Sing.) (신품종 이슬송이버섯(Lentinula edodes GNA01)과 양송이버섯(Agaricus bisporus Sing.)의 저온 저장과 저장기간에 따른 품질 변화)

  • Choi, Duck-Joo;Lee, Yun-Jung;Kim, Youn-Kyung;Kim, Mun-Ho;Choi, So-Rye;Youn, Aye-Ree
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate quality characteristics and antioxidant effects on storage by temperature between new cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) and button mushroom (Agaricus bisporus). Methods: Dewdrop Pine Mushroom and button mushroom were prepared at low storage temperature. Results: Weight loss increased with time, whereas the new cultivar Dewdrop Pine Mushroom showed a decrease of less than 4% until 15days. Hardness of new cultivar Dewdrop Pine Mushroom was reduces less than button mushroom during storage. Color change of new cultivar Dewdrop Pine Mushroom was not altered during storage. For viable cell count, new cultivar Dewdrop Pine Mushroom proliferated less than button mushroom. For antioxidant activity, polyphenol content increased with storage period of both mushrooms. The electron-donating action of new cultivar Dewdrop Pine Mushroom maintained high antioxidant activity accounting for 80% until 12 days of storage. New cultivar Dewdrop Pine Mushroom was evaluated as better than pine mushroom as it exceeded the middle of storage in sensory characteristics; such as appearance, color, aroma and overall acceptability, etc. Conclusion: In summary, new cultivar Dewdrop Pine Mushroom was stored for 12 days while button mushroom was stored for 9 days.

Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain

  • Ha, Seung Cheol;Han, A Reum;Kim, Dae Won;Kim, Eun-A;Kim, Duk-Soo;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.370-375
    • /
    • 2013
  • Ischemia is characterized by oxidative stress and changes in the antioxidant defense system. Our recent in vitro study showed that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects cortical astrocytes against oxidative stress. In the current study, we examined the effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on ischemia-induced neuronal damage in a gerbil ischemia/reperfusion models. Extensive neuronal death in the hippocampal CA1 area was observed 4 days after ischemia/reperfusion. Intraperitoneal injection of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (0.3 mg/kg body weight) significantly prevented neuronal death in the CA1 region of the hippocampus in response to transient forebrain ischemia. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride administration reduced ischemia-induced increases in reactive oxygen species levels and malondialdehyde content. It also attenuated the associated reductions in glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities. Taken together, our results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against ischemia-induced neuronal damage by reducing oxidative stress through its antioxidant actions.

Effect of Saponin with Antioxidant Activity on Matrix Metalloproteinase in Human Dermal Fibroblasts (항산화 효능을 가진 사포닌이 사람섬유아세포에서 기질 금속 단백질 분해효소에 미치는 영향)

  • Park, Hye-Jung;Kim, Moon-Moo;Lee, Dong-Hwan
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1266-1273
    • /
    • 2011
  • Saponin is a main component of ginseng widely known as an oriental traditional medicinal ingredient. A variety of biological effects of saponin has been reported, but its action related to skin regeneration has remained unclear so far. In this study, the effect of saponin on matrix metalloproteinase as well as its antioxidant effect in cell free system was examined in human dermal fibroblasts. First of all, as a result of investigating the effect of saponin on cell viability using MTT assay, it was shown to increase cell viability below 10 ${\mu}g$/ml, but it also showed cytotoxicity above 25 ${\mu}g$/ml. The antioxidant effect of saponin was exerted by inhibition of $H_2O_2$ in addition to reducing power above 1 ${\mu}g$/ml. In particular, saponin showed a protective effect on DNA oxidation. Furthermore, it was observed that saponin activates MMP-2 and increases MMP-1 activity in gelatin and casein zymography analyses, respectively, indicating that saponin could have potential a therapeutic agent for anti-aging and skin regeneration.