• Title/Summary/Keyword: Antioxidant/anticancer activities

Search Result 270, Processing Time 0.032 seconds

The Antioxidant and Anticancer Effects of MeOH Extract of Liriodendron tulipifera (튤립(Liriodendron tulipifera) 나무가지 메탄올 추출물의 항산화와 항암활성 효과)

  • Xu, Ming-Lu;Wang, Lan;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • In order to screen the functional constituents from nature resource, we studied the bioactivities of methanol extract of the Liriodendron tulipifera branch(MLT). The total phenolic and flavonoid contents, DPPH radical scavenging capacity, reducing power, $Fe^{2+}$ chelating ability, inhibition of lipid peroxidation and cell toxicity of MLT were investigated in this study. We found that the total phenolic and flavonoid content of MLT is 75.34 mg gallic acid/g and 20.15 mg quercetin/g respectively. MLT exhibited the antioxidant activity on DPPH radical with a $EC_{50}$ value of $289.68\;{\mu}g$/mL, the absorbance is 0.388 at $100\;{\mu}g$/mL in reducing power assay, MLT prevented 38.56% lipid peroxidation at $200\;{\mu}g$/mL. Furthermore, MLT exhibits the potent anti-proliferative activity which inhibited 56.94%, 35.73% growth of HT-29 and Hela cell at $200\;{\mu}g$/mL respectively. It showed that the antioxidant activities of MLT were correlated with its total phenolic and flavonoid contents. However further study need to be exploring in the future.

Foods and functional foods containing mushroom, mushroom extracts, and mushroom-derived compounds (버섯원물과 버섯 추출물 그리고 버섯 유래 화합물을 포함한 식품과 기능성식품)

  • Jo, Han-Gyo;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.155-163
    • /
    • 2017
  • Mushrooms and their extracts including purified ingredients, are currently used as foods, functional foods (and/or nutraceuticals), and medicines. These products have numerous bioactive compounds such as polysaccharides (mainly ${\beta}$-glucans), glycoproteins, nucleotide analogs, terpenoids, and polyphenols, which have exhibited antioxidant, antimicrobial, anticancer, antiviral, anti-obesity, and immunomodulatory activities. In this review, we discuss the current information on the biactivities of 10 popular mushrooms in Korea. We also summarize the information on mushrooms and the active compounds derived from them, as well as mushroom-based products such as foods, functional foods, and medicines. We believe this review could provide useful information for scientists and consumers who seek to develop new products and promote healthy food habits and lifestyle.

A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives

  • Magar, Rubin Thapa;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2020
  • Quercetin and its derivatives are important metabolites that belong to the flavonol class of flavonoids. Quercetin and some of the conjugates have been approved by the FDA for human use. They are widely distributed among plants and have various biological activities, such as being anticancer, antiviral, and antioxidant. Hence, the biosynthesis of novel derivatives is an important field of research. Glycosylation and methylation are two important modification strategies that have long been used and have resulted in many novel metabolites that are not present in natural sources. A strategy for modifying quercetin in E. coli by means of glycosylation, for example, involves overexpressing respective glycosyltransferases (GTs) in the host and metabolic engineering for increasing nucleoside diphosphate sugar (NDP-sugar). Still others have used microorganisms other than E. coli, such as Streptomyces sp., for the biotransformation process. The overall study of the structural activity relationship has revealed that modification of some residues in quercetin decreased one activity but increased others. This review summarizes all of the information mentioned above.

Facile Synthesis of Natural Moracin Compounds using Pd(OAc)2/P(tBu)3-HBF4 as a Sonogashira Coupling Reagent

  • Lee, Jae Jun;Yun, So-Ra;Jun, Jong-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3453-3458
    • /
    • 2014
  • An efficient and practical synthesis of natural moracins, which have diverse range of biological properties including anticancer, antioxidant, and antibacterial activities, has been achieved using $Pd(OAc)_2/P(^tBu)_3-HBF_4$ as a Sonogashira coupling reagent which solved the unreactive problems in case of higher electron density of haloaryl compounds in the reaction. Lowering electron density of halophenol with acetylation and changing Sonogashira coupling reagent from $PdCl_2(PPh_3)_2$ to $Pd(OAc)_2/P(^tBu)_3-HBF_4$ smoothly produce the benzofuran structures in the syntheses of moracins M, N and S. The electron deficient halobenzaldehyde, however, easily forms the benzofuran using original Sonogashira conditions, and utilized for the first synthesis of moracin Y.

Development of functional substances on Alzheimer's disease

  • Heo, Ho-Jin
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2007.11a
    • /
    • pp.65-72
    • /
    • 2007
  • Phytochemicals have long been known to hold a number of physiological benefits, including antioxidant, anticardiovascular activities and anticancer. The profitable effects of phytochemicals from food sources such as vegetables and fruits, with respect to neurodegeneration, are only beginning to receive increased attention. Alzheimer's disease (AD) is one of the major neurodegenerative diseases for which no treatment is available, and characterized by loss of cognition and memory. Many recent studies show that the brain of AD patient is subjected to increased oxidative stress resulting from free radical damage, and the resulting cellular malfunctions are widely believed to be responsible for neuronal degeneration in AD. In this study, the relative relation between AD and phytochemicals were surveyed.

  • PDF

Entrapment of Ellagic Acid in Dairy Protein-Based Nanoparticles

  • Lee, Mee-Ryung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.121-124
    • /
    • 2018
  • Ellagic acid (EA) is a naturally occurring polyphenolic compound in vegetables, nuts, and fruits such as berries. EA has antioxidant, anticancer, anti-allergy, and anti-inflammatory activities. The objectives of this research were to investigate the physicochemical properties of nanoparticles before and after nano-encapsulation of EA in dairy protein and to develop a functional (anti-inflammatory) dairy protein-based beverage containing EA. A particle size analyzer was used to determine the physicochemical and morphological properties. High performance liquid chromatography was used to evaluate the entrapment efficiency of EA. The nanoparticles containing EA were 100 to 200 nm in diameter. The determined poly dispersity index value of 0.3 to 0.4 indicated that the nanoparticles were uniformly distributed with similar size. Zeta-potential values were also similar between the control groups. The entrapment efficiency of EA was nearly 90%. The results indicate the potential for development of nanoparticles containing EA beverage products with anti-inflammatory activity.

Cancer Chemoprevention by Dietary Proanthocyanidins

  • Jo, Jeong-Youn;Lee, Chang-Yong
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.501-508
    • /
    • 2007
  • Proanthocyanidins (PACs), also named condensed tannins, are polymers of flavan-3-ols such as (+ )-(gallo)catechin and (-)-epi(gallo)catechin. A proper analysis of the PACs, with difficult challenges due to their complex structures, is crucial in studies of cancer chemoprevention. Cancer is a leading cause of mortality around the world. Many experimental studies have shown that dietary PACs are potential chemopreventive agents that block or suppress against multistage carcinogenesis in both in vitro and in vivo models. Cancer chemoprevention by dietary PACs has been shown effective through different mechanisms of action such as antioxidant, apoptosis-inducing, and enzyme inhibitory activities. Good sources of dietary PACs are nuts, fruits, beans, chocolate, fruit juice, red wine, and green tea. The chemopreventive potential of dietary PACs should be considered together with their bioavailability in humans. The safety issues regarding carcinogenesis and gastrointestinal disorder are also reviewed.