• Title/Summary/Keyword: Antimicrobial hydrogel

Search Result 14, Processing Time 0.025 seconds

Development of Hydrogels to Improve the Safety of Yukhoe (Korean Beef Tartare) by Reducing Psychrotrophic Listeria monocytogenes Cell Counts on Raw Beef Surface

  • Oh, Hyemin;Kim, Sejeong;Lee, Soomin;Ha, Jimyeong;Lee, Jeeyeon;Choi, Yukyung;Lee, Yewon;Kim, Yujin;Seo, Yeongeun;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1189-1195
    • /
    • 2018
  • This study developed an antimicrobial hydrogel to control Listeria monocytogenes in Yukhoe (Korean beef tartare). Four hydrogels (hydrogel 1: 5% alginate+1% chitosan+0.2% $CaCl_2$, hydrogel 2: 1% ${\kappa}$-carrageenan+1% chitosan, hydrogel 3: 2% ${\kappa}$-carrageenan+1% $CaCl_2$, and hydrogel 4: 2% ${\kappa}$-carrageenan+3% $CaCl_2$) were prepared. The hydrogels then absorbed 0.1% grapefruit seed extract (GSE) and 0.1% citrus extract (CE) for 30, 60, 120, and 240 min to be antimicrobial hydrogels. To select the most effective antimicrobial hydrogel, their swelling ratio (SR) and antilisterial activities were determined. The selected hydrogel ($2{\times}2cm$) was then placed on surface of beef (round; $3{\times}3cm$), where L. monocytogenes (ca. $10^6CFU/g$) were inoculated, and the cell counts were enumerated on PALCAM agar. Among the hydrogels, the SR of hydrogel 1 increased with absorbing time, but other hydrogels showed no significant changes. Antimicrobial hydrogel 1 showed higher (p<0.05) antilisterial activity than other antimicrobial hydrogels, especially for the one absorbed the antimicrobial for 120 min. Thus, the antimicrobial hydrogel 1 absorbed antimicrobials for 120 min was applied on raw beef at $4^{\circ}C$, and reduced (p<0.05) more than 90% of L. monocytogenes on raw beef. These results indicate that antimicrobial hydrogel 1 formulated with 0.1% GSE or 0.1% CE is appropriate to improve the safety of Yukhoe by reducing psychrotrophic L. monocytogenes cell counts on raw beef.

Preparation and Performance Analysis of Ophthalmic Polymer Using SWCNT and SWCCNT

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.735-740
    • /
    • 2019
  • The purpose of this study is to fabricate an ophthalmic lens by copolymerizing two types of carbon nanotubes and hydrophilic hydrogel lens materials, and to investigate its application as an ophthalmic lens material by analyzing its physical properties and antimicrobial effect. For polymerization, HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate), a crosslinking agent, and AIBN (azobisisobutyronitrile), an initiator, are used as a basic combination, and a single-walled carbon nanotube and a single-walled, carboxylic-acid-functionalized carbon nanotube are used as additives. To analyze the physical properties, the water content, refractive index, breaking strength, and antimicrobial effect of the fabricated lenses are measured. The fabricated lenses satisfies all the basic properties of the basic hydrogel ophthalmic lens. The water content increases with increasing amount of additive and decreases with addition of 0.2 % ratio of nanoparticles. The refractive index is inversely proportional to the water content result. As a result of the antimicrobial test of the fabricated lens, the addition of carbon nanotubes shows an excellent antimicrobial effect. Therefore, it is considered that the fabricated lens can be applied as a functional material for basic ophthalmic hydrogel lenses.

Antimicrobial Hydrogel Contact Lens Containing Alginate

  • Lee, Hyun-Mee;Kim, Jong-Ki;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4239-4243
    • /
    • 2011
  • Biocompatible hydrogels from 2-hydroxyethyl methacrylate (HEMA) monomer containing various amount of alginate in the presence and absence of hydrophilic methacrylic acid (MAA) were synthesized in order for biomedical application. The antimicrobial effect and interaction with proteins for hydrogels were investigated in this study. MAA was introduced because it was expected to increase the amount of water content in the polymer which is an important factor for biocompatibility, and alginate was expected to enhance the antimicrobial activity. The antimicrobial effect against S. aureus and E. coli increased for all hydrogels as the amount of alginate and MAA contained. Presence of MAA further enhances the antimicrobial effect. Amount of adsorption of bovine serum albumin (BSA) increased with increasing concentration of alginate whether MAA was present or not. Contrarily, the amount of lysozyme was not affected with increasing alginate concentration in the absence of MAA, while it decreased in the presence of MAA.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

Radiation Preparation and Characterization of Antimicrobial Hydrogels (방사선 이용 항균성 천연추출물 함유 하이드로겔 제조 및 특성 연구)

  • Gwon, Hui-Jeong;Park, Eun Ji;Choi, Jong-Bae;Lim, Jong-Young;Jeong, Jin-Oh;Shin, Young Min;Jeong, Sung In;Park, Jong-Seok;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.87-91
    • /
    • 2013
  • Taraxacum platycarpum (TP) has been used for years without restriction on usual dose for its non-toxic nature and nonexistence of the side effects. To develop antimicrobial hydrogel, poly (vinylalcohol) (PVA) hydrogels containing the aqueous extracted TP as an antimicrobial agent were prepared by using gamma-rays irradiation. The antimicrobial activities of the TP hydrogels were tested against Staphylococcus aureus and Staphylococcus epidermidis by disc diffusion method. The inhibition zones (IZ) of the TP extracts and TP hydrogels against S. aureus were 16 mm and 20 mm and against S. epidermidis was 10 mm and 13 mm, respectively. In conclusion, the TP hydrogel that has an excellent antimicrobial activity was proved to be a valuable material for functional skin care.

Antibacterial Characteristics of PVA/PAA Hydrogel Film using Cefotaxime (Cefotaxime을 이용한 PVA/PAA 하이드로 겔 필름의 항균 특성)

  • Yeom, SeokJae;Jung, Sundo;Oh, Eunha
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • Objectives: Cefotaxime is an antibiotic used to treat several bacterial infections. Specifically, it is used to treat pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, and sepsis. It is given by injection into either a vein or muscle. Antibacterial polymers prepared by chemical bonding and simple blending of antibacterials into polymers has attracted much interest because of their long-lasting antibacterial activity. This study attempted to review the possibility of hydrogel films as functional antibacterial materials by antimicrobial activity. Methods: In this study, CTX-PAA was synthesized by the chemical reaction of polyacrylic acid with cefotaxime by N,N'-Dicyclohexylcarbodiimide (DCC) method. Synthetic antibacterial hydrogel films were then prepared with PVA and CTX-PAA for functional application. Results: The increase in the cefotaxime content of the hydrogel films showed a similar decrease in tensile strength and elongation. The values of films impregnated with chemically bonded cefotaxime showed no significant difference. Antibacterial susceptibility was determined against Streptococcus pneumoniae and Escherichia coli using a standardized disc test. Conclusion: The synthetic antibacterial hydrogel films exhibited broad susceptibility against Streptococcus pneumoniae and Escherichia coli. Notably, the antibacterial effect of antibacterial hydrogel films against Grampositive (Streptococcus pneumoniae) was superior to that against Gram-negative (Escherichia coli).

Fabrication of Antimicrobial Wound Dressings Using Silver-Citrate Nanorods and Analysis of Their Wound-Healing Efficacy

  • Park, Yong Jin;Jeong, Jisu;Kim, Jae Seok;Choi, Dong Soo;Cho, Goang-Won;Park, Jin Seong;Lim, Jong Kuk
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.47-57
    • /
    • 2019
  • Staphylococcus epidermidis is well-known not only as an innocuous normal flora species commonly isolated from human skin, but also as an important bacterial species to keep skin healthy, because this species can protect the human skin from pathogenic microorganisms. However, S. epidermidis turns into a potential pathogen in damaged skin, because these bacteria can easily form a biofilm on the wound area and provide antimicrobial resistance to other microorganisms embedded in the biofilm. Thus, it is important to kill S. epidermidis in the early stage of wound treatment and block the formation of biofilms in advance. In the present study, hydrogel wound dressings were fabricated using polyvinyl alcohol/polyethylene glycol containing silver citrate nanorods, which have been proven to have strong antimicrobial activity, especially against S. epidermidis, and their wound-healing efficacy was investigated in vivo using a rat experiment.

Preparation and Characterization of Poly(vinyl alcohol) Hydrogel Contain Metronidazole by Irradiation (감마선을 이용한 Metronidazole이 함유된 Poly(vinyl alcohol) 하이드로겔 제조 및 특성)

  • Baik, Jae;Park, Jong-Seok;Jong, Jin-Oh;Jeong, Sung In;Gwon, Hui-Jeong;Ahn, Sung-Jun;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Periodontitis is disease of damaged gum tissue that is not removed the plaque onto teeth. In case that the symptoms of disease get pain worse, it will have to extract tooth because of tumefy or bleeding at gums so treatment of drug was required to periodontitis. In this study, the hydrogel was prepared by including superior viscous, excellent elastic, and biocompatibility of Poly(vinyl alcohol, PVA) and antimicrobial drug of Metronidazole (MD). The 15 wt% PVA was dissolved in deionized water and then prepared PVA solution was irradiated using gamma-ray at 25 kGy ($10kGy\;hr^{-1}$). In addition, PVA hydrogel was immersed in each 0.1, 0.25 and 0.5 wt% MD solution using stirrer for 24 hr. The result of the gelation, 0.5 wt% MD loaded PVA hydrogel(76%) was lower than PVA hydrogel (88.2%). The swelling ration of 0.5 wt% MD loaded PVA hydrogel (294.8%) was higher than PVA hydrogel (105.2%). The compressive strength and thermal properties of MD loaded PVA hydrogel was gradually lower. The drug release test of 0.5 wt% MD loaded PVA hydrogel (61%) was higher than 0.1 wt% MD loaded PVA hydrogel (12%). Therefore, MD loaded PVA hygrogel may be a promising tool for periodontitis medicine by gamma-ray.

Formation of Carboxymethyl Cellulose Hydrogel Containing Silver Nanoparticle (은 나노입자를 함유하는 카르복시메틸 셀룰로오스 하이드로겔 제조)

  • Park, Jong-Seok;Kuang, Jia;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.353-357
    • /
    • 2010
  • Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using $AgNO_3$ aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications

  • Reddy, P. Rama Subba;Eswaramma, S.;Krishna Rao, K.S.V.;Lee, Yong Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2391-2399
    • /
    • 2014
  • Novel dual responsive pectin hydrogels composed from poly(acrylamidoglycolic acid-co-vinylcaprolactam)/Pectin (PAV-PC) and also PAV-PC hydrogels are used as templates for the production of silver nanoparticles. 5-Fluorouracil is an anticancer drug and has been loaded in situ into PAV-PC hydrogels. Structure and morphology characterization of PAV-PC hydrogels were investigated by fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, X-ray diffraction studies, scanning electron microscopy and transmission electron microscopy. The results revealed a molecular level dispersion of the drug in PAV-PC hydrogels. In vitro release of 5-fluorouracil from the PAV-PC hydrogels has been carried out in GIT fluids as well as in various temperatures. 5-Fluorouracil released from PAV-PC hydrogels was 50% at pH 1.2, and 85% at pH 7.4 within 24 h. The release profile was characterized with PAV-PC hydrogels and initial burst effect was significantly reduced in two buffer media (1.2 and 7.4), followed by a continuous and controlled release phase, the drug release mechanism from polymer was due to Fickian diffusion. In situ fabrication of silver nanoparticles inside the hydrogel network via the reduction of sodium borohydrate by PAV-PC chains led to hydrogel nanocomposites. The diameter of the nanocomposites was about 50-100 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. These nanocomposite PAV-PC hydrogels showed strong antimicrobial activity towards Bacillus subtilis (G+ve) and Escherichia coli (G-ve).