• Title/Summary/Keyword: Antigen process

Search Result 127, Processing Time 0.031 seconds

Regulatory T Cells and Infectious Disease

  • Rouse, Barry T.;Sehrawat, Sharvan
    • IMMUNE NETWORK
    • /
    • 제7권4호
    • /
    • pp.167-172
    • /
    • 2007
  • Various cell types that express regulatory function may influence the pathogenesis of most and perhaps all infections. Some regulatory cells are present at the time of infection whereas others are induced or activated in response to infection. The actual mechanisms by which different types of infections signal regulatory cell responses remain poorly understood. However a most likely mechanism is the creation of a microenvironment that permits the conversion of conventional T cells into cells with the same antigen specificity that have regulatory function. Some possible means by which this can occur are discussed. The relationship between regulatory cells and infections is complex especially with chronic situations. The outcome can either be of benefit to the host or damage the disease control process or in rare instances appears to be a component of a finely balanced relationship between the host and the infecting agent. Manipulating the regulatory cell responses to achieve a favorable outcome of infection remains an unfulfilled objective of therapeutic immunology.

인공면역계 기반의 자율이동로봇군의 협조행동전략 결정 (Artificial immune network-based cooperative beharior strategies in collective autonomous mobile rotos)

  • 이동욱;심귀보
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.102-109
    • /
    • 1998
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment.For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental codintion changes, a robot select an appropriate beharior stategy. And its behavior stategy is stimulated and suppressed by other robot using communiation. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idotopic network hypothesis. And it is used for decision making of optimal swarm stragegy.

  • PDF

Negative Selection Algorithm for DNA Sequence Classification

  • Lee, Dong Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.231-235
    • /
    • 2004
  • According to revealing the DNA sequence of human and living things, it increases that a demand on a new computational processing method which utilizes DNA sequence information. In this paper we propose a classification algorithm based on negative selection of the immune system to classify DNA patterns. Negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes n group of antigenic receptor for n different patterns, they can classify into n patterns. In this paper we propose a pattern classification algorithm based on negative selection in nucleotide base level and amino acid level.

자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링 (An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots)

  • 이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

단일클론항체를 이용한 배양 계배 근원세포의 융합과 연관된 단백질의 확인 (Identification of a Fusion-associated Protein in the Skeletal Myoblast Using Monoclonal Antibody)

  • Kim, Chons-Rak;Won
    • 한국동물학회지
    • /
    • 제35권1호
    • /
    • pp.29-36
    • /
    • 1992
  • The present study describes the production of monoclonal antibodies against cultured chick myoblast to pursue critical proteins in muscle cell fusion. Among a panel of monoclonal antibodies, three, Mll-3H 13, Mll-3Hl8 and Mll-3H35 were inhibited movblast fusion. A single 101-kDa antigen reactive with monoclonal antibody Mll-3H35 was detected by radioimmu-noprecipitation or by immunoblotting. During the course of myogenesis, the level of the protein remarkably decreased as the cells there differentiated. These results suggest that the protein platys a direct role in the process of myoblast fusion mechanism.

  • PDF

Unleashing the Therapeutic Potential of CAR-T Cell Therapy Using Gene-Editing Technologies

  • Jung, In-Young;Lee, Jungmin
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.717-723
    • /
    • 2018
  • Chimeric antigen receptor (CAR) T-cell therapy, an emerging immunotherapy, has demonstrated promising clinical results in hematological malignancies including B-cell malignancies. However, accessibility to this transformative medicine is highly limited due to the complex process of manufacturing, limited options for target antigens, and insufficient anti-tumor responses against solid tumors. Advances in gene-editing technologies, such as the development of Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), have provided novel engineering strategies to address these limitations. Development of next-generation CAR-T cells using gene-editing technologies would enhance the therapeutic potential of CAR-T cell treatment for both hematologic and solid tumors. Here we summarize the unmet medical needs of current CAR-T cell therapies and gene-editing strategies to resolve these challenges as well as safety concerns of gene-edited CAR-T therapies.

Development of Transient Gene Expression System using Seedlings

  • Choi, Jang-Won;Park, Hee-Sung
    • 농업생명과학연구
    • /
    • 제45권6호
    • /
    • pp.193-199
    • /
    • 2011
  • An efficient transient expression system has been developed and characterized for the production of foreign genes in seedlings. The seedlings can be easily produced from commercial seeds used for vegetable sprouts. In principal, a chemical abrasive was employed to generate wounds in seedlings prior to vacuum-infiltration with Agrobacterium tumefaciens bearing the target gene. This optimized chemical wounding-assisted agro-infiltration process resulted in up to 15-fold increase in $\beta$-glucuronidase (GUS) enzyme activity. This procedure has been used efficiently to express hepatitis B surface antigen (HBsAg) protein in a transient mode. Therefore, seedlings with proper wounds can be suggested as a convenient tool for the production of useful recombinant proteins.

Antibody-based Screening of Porphyromonas gingivalis Proteins Specifically Produced in Patients with Chronic Periodontitis

  • Kim, Hye-Jung;Lee, Seok-Woo
    • International Journal of Oral Biology
    • /
    • 제43권4호
    • /
    • pp.201-207
    • /
    • 2018
  • Porphyromonas gingivalis is among the major etiological pathogens of chronic periodontitis. The virulence mechanisms of P. gingivalis is yet to be identified as its activity is largely unknown in actual disease process. The purpose of this study is to identify antigens of P. gingivalis expressed only in patients with chronic periodontitis using a unique immunoscreening technique. Change Mediated Antigen Technology (CMAT), an antibody-based screening technique, was used to identify virulence-associated proteins of P. gingivalis that are expressed only during infection stage in patients having chronic periodontitis. Out of 13,000 recombinant clones screened, 22 tested positive for reproducible reactivity with rabbit hyperimmune anti-sera prepared against dental plaque samples acquired from periodontitis patients. The DNA sequences of these 18 genes were determined. CMAT-identified protein antigens of P. gingivalis included proteins involved in energy metabolism and biosynthesis, heme and iron binding, drug resistance, specific enzyme activities, and unknown functions. Further analysis of these genes could result in a novel insight into the virulence mechanisms of P. gingivalis.

Immune Evasion of G-CSF and GM-CSF in Lung Cancer

  • Yeonhee Park;Chaeuk Chung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제87권1호
    • /
    • pp.22-30
    • /
    • 2024
  • Tumor immune evasion is a complex process that involves various mechanisms, such as antigen recognition restriction, immune system suppression, and T cell exhaustion. The tumor microenvironment contains various immune cells involved in immune evasion. Recent studies have demonstrated that granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce immune evasion in lung cancer by modulating neutrophils and myeloid-derived suppressor cells. Here we describe the origin and function of G-CSF and GM-CSF, particularly their role in immune evasion in lung cancer. In addition, their effects on programmed death-ligand 1 expression and clinical implications are discussed.

Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications

  • Seungbo Yoo;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.52-60
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that bridge innate and adaptive immune responses, thereby leading to immune activation. DCs have been known to recognize pathogen-associated molecular patterns such as lipopolysaccharides (LPS) and nucleic acids via their pattern recognition receptors, which trigger signaling of their maturation and effector functions. Furthermore, DCs take up and process antigens as a form of peptide loaded on the major histocompatibility complex (MHC) and present them to T cells, which are responsible for the adaptive immune response. Conversely, DCs can also play a role in inducing immune suppression under specific circumstances. From this perspective, the role of DCs is related to tolerance rather than immunity. Immunologists refer to these special DCs as tolerogenic DCs (tolDCs). However, the definition of tolDCs is controversial, and there is limited information on their development and characteristics. In this review, we discuss the current concept of tolDCs, cutting-edge methods for generating tolDCs in vitro, and future applications of tolDCs, including clinical use.