• 제목/요약/키워드: Antifungal protein

검색결과 129건 처리시간 0.023초

Resistance Function of Rice Lipid Transfer Protein LTP110

  • Ge, Xiaochun;Chen, Jichao;Li, Ning;Lin, Yi;Sun, Chongrong;Cao, Kaiming
    • BMB Reports
    • /
    • 제36권6호
    • /
    • pp.603-607
    • /
    • 2003
  • Abstract Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.

Construction of a Recombinant Bacillus velezensis Strain as an Integrated Control Agent Against Plant Diseases and Insect Pests

  • Roh, Jong-Yul;Liu, Qin;Choi, Jae-Young;Wang, Yong;Shim, Hee-Jin;Xu, Hong Guang;Choi, Gyung-Ja;Kim, Jin-Cheol;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1223-1229
    • /
    • 2009
  • To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

식물근부균 Fusarium solani에 대한 Pseudomonas stutzeri YPL-1의 생물학적 방제기작 (Antifungal Mechanism of Pseudomonas stutzeri YPL-l for Biocontrol of Fusarium solani causing Plant Root Rot)

  • 임호성;김상달
    • 한국미생물·생명공학회지
    • /
    • 제18권1호
    • /
    • pp.81-88
    • /
    • 1990
  • 근채류식물의 근부원인이 되는 토양유래의 식물병원 성진균에 대한 생물학적 방제를 위하여 저병해인삼경작 지토양으로부터 식물근부균 Fusarium solani의 생육을 강력히 길항하는 억제세균 YPL-1을 분리, 선발하였으며 이들 동정한 결과 Pseudomonas stutzeri이거나 그 근연종으로 확인하였다. 선발된 P.stutzeri YPL-1에 의해 생산된 근부균생육억제물질은 열에 민감하고 고분자의 단백질물질로서 chitinase 및 laminarinase 등 F.solani의 외막가수분해효소인 것으로 추정된다. 더욱이 chitinase 생산능과 근부균생육억제능은 정관계로 비례한다는 것도 알았다. 이는 NTG를 이용하여 얻은 chitinase 및 laminarinase 생산불능변이주 P.stutzeri YPL-M122(chi-, lam-), P.stutzeri YPL-M153(chi-)에 의해서도 확인되었다. 그러나 본 P.stutzeri YPL-1은 siderophore를 전혀 생산하지는 못하였다. 이 결과로 미루어 보아 선발된 억제균 P.stutzeri YPL-1 균주에 의한 식물근부균 F.solani의 생육억제기작은 저분자물질인 항생물질이나 siderophore가 아닌 chitinase를 주로 하는 외막가수분해효소에 의한 근부균 F.solani의 세포벽분해에 기인된 것으로 생각된다.

  • PDF

사상성 진균 Aspergillus nidulans에서 아쿠아포린 유전자 aqpA의 분리 및 분석 (Identification and Characterization of the Aquaporin Gene aqpA in a Filamentous Fungus Aspergillus nidulans)

  • 오동순;육함연;한갑훈
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.295-301
    • /
    • 2011
  • 아쿠아포린(aquaporin)은 MIP (Major Intrinsic Protein) 패밀리에 속하는 물 수송 채널(water transport channel) 단백질로 단세포 생물인 박테리아부터 다세포 고등생물인 인간에 이르기까지 다양한 기관계에서 잘 보존되어 있다. 아쿠아포린은 정통아쿠아포린(orthodox aquaporin)과 아쿠아글리세로포린(aquaglyceroporin)으로 구분되는데, 정통아쿠아포린은 주로 세포내의 물 유입 및 수송에 관여하며 아쿠아글리세로포린은 glycerol, polyol, urea를 비롯한 작은 비극성 분자의 수송에 관여하는 것으로 알려져 있다. 최근까지 효모에서 아쿠아포린 기능이 일부 밝혀졌지만 Aspergillus 속을 포함하는 사상성 진균에서는 거의 연구가 되어있지 않은 실정이다. 본 연구에서는 A. nidulans의 유전체 염기서열 정보를 분석하여 하나의 정통아쿠아포린(aqpA)과 네 개의 아쿠아글리세로포린(aqpB-E)을 발견하였다. 이를 바탕으로 aqpA 유전자 결실돌연변이들을 만들어 그 기능을 분석하였다. aqpA 결실돌연변이는 각종 삼투 스트레스(osmotic stress)에서는 표현형의 변화가 거의 관찰되지 않았으며 이는 이들 유전자가 삼투 스트레스에 반응하지 않거나 유전자의 중복성 때문으로 여겨진다. 그러나 항진균제인 fluconazol에 대해서 그 감수성이 적어지는 것이 관찰 되었다. 이는 aqpA 유전자가 삼투스트레스 반응보다 항진균제의 감지에 더 기능을 가지고 있을 수 있음을 시사한다.

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Lee, Jaewoong;Woo, Jihye;Kang, Nam Sook;Balupuri, Anand;Lee, Minho;Kim, Seon-Young;Ro, Hyunju;Choi, Youn-Woong;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.234-247
    • /
    • 2021
  • We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

소수성 항진균제 전달체로 응용하기 위한 데옥시콜릭산이 결합된 저분자량 수용성 키토산 나노입자의 제조와 특성 (Preparation and Characterization of Deoxycholic Acid-Conjugated Low Molecular Weight Water-Soluble Chitosan Nanoparticles for Hydrophobic Antifungal Agent Carrier)

  • 최창용;정현;남정표;박윤경;장미경;나재운
    • 폴리머
    • /
    • 제33권4호
    • /
    • pp.389-395
    • /
    • 2009
  • 저분자량수용성 키토산(LMWSE)을 소수성 항진균제 전달체로 응용하기 위하여, 데옥시콜릭산(deoxycholic acid, DA)을 이용하여 LMWSE를 화학적으로 개질하였다. DA가 결합된 LMWSC 나노입자(WSEDA)의 특성은 동적 광산란기, 투과전자현미경을 이용하여 그 특성을 분석하였다. 제조되어진 나노입자의 크기는 $250{\sim}350\;nm$로 DA의 치환도가 증가함에 따라 입자의 크기가 증가하였다. 항진균제인 이트라코나졸(itraconazole)이 봉입된 WSEDA 나노입자(WSEDA-ITCN)는 소수성 상호작용을 이용한 용매 증발법으로 제조하였다. UV 분광광도계를 이용하여 약물의 함량 및 담지 효율을 측정한 결과 약물의 담지 효율은 $61{\sim}68%$로 우수한 담지 효율을 보였다. 약물방출 거동에서 이트라코나졸이 봉입된 나노파티클의 DA의 함량이 많아질수록 약물이 천천히 방출되었다. 이상의 결과로부터 본 연구에서 제조한 DA가 결합된 저분자량 수용성 키토산 나노파티클이 항진균제 전달체로서 매우 높은 응용 가능성을 나타내고 있음을 확인하였다.

Structure-Based Virtual Screening and Biological Evaluation of Non-Azole Antifungal Agent

  • Lee, Joo-Youn;Nam, Ky-Youb;Min, Yong-Ki;Park, Chan-Koo;Lee, Hyun-Gul;Kim, Bum-Tae;No, Kyoung-Tai
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.139-143
    • /
    • 2005
  • Cytochrome P450 14${\alpha}$-sterol demethylase enzyme (CYP51) is the target a of azole type antifungals. The azole blocks the ergosterol synthesis and thereby inhibits fungal growth. A three-dimensional (3D) homology model of CYP51 from Candida albicans was constructed based on the X-ray crystal structure of CYP51 from Mycobacterium tuberculosis. Using this model, the binding modes for the substrate (24-methylene-24, 25-dihydrolanosterol) and the known inhibitors (fluconazole, voriconazole, oxiconazole, miconazole) were predicted from docking. Virtual screening was performed employing Structure Based Focusing (SBF). In this procedure, the pharmacophore models for database search were generated from the protein-ligands interactions each other. The initial structure-based virtual screening selected 15 compounds from a commercial available 3D database of approximately 50,000 molecule library, Being evaluated by a cell-based assay, 5 compounds were further identified as the potent inhibitors of Candida albicans CYP51 (CACYP51) with low minimal inhibitory concentration (MIC) range. BMD-09-01${\sim}$BMD-09-04 MIC range was 0.5 ${\mu}$g/ml and BMD-09-05 was 1 ${\mu}$g/ml. These new inhibitors provide a basis for some non-azole antifungal rational design of new, and more efficacious antifungal agents.

  • PDF

Isolation, Screening, and Identification of Actinomycetes with Antifungal and Enzyme Activity Assays against Colletotrichum dematium of Sarcandra glabra

  • Song, Lisha;Jiang, Ni;Wei, Shugen;Lan, Zuzai;Pan, Limei
    • Mycobiology
    • /
    • 제48권1호
    • /
    • pp.37-43
    • /
    • 2020
  • A serious leaf disease caused by Colletotrichum dematium was found during the cultivation of Sarcandra glabra in Jingxi, Rong'an, and Donglan Counties in Guangxi Province, which inflicted huge losses to plant productivity. Biological control gradually became an effective control method for plant pathogens. Many studies showed that the application of actinomycetes in biological control has been effective. Therefore, it may be of great significance to study the application of actinomycetes on controlling the diseases caused by S. glabra. Strains of antifungal actinomycetes capable of inhibiting C. dematium were identified, isolated and screened from healthy plants tissues and the rhizospheres in soils containing S. glabra. In this study, 15 actinomycetes strains were isolated and among these, strains JT-2F, DT-3F, and JJ-3F, appeared to show antagonistic effects against anthracnose of S. glabra. The strains JT-2F and DT-3F were isolated from soil, while JJ-3F was isolated from plant stems. The antagonism rate of strain JT-2F was 86.75%, which was the highest value among the three strains. Additionally, the JT-2F strain also had the strongest antagonistic activity when the antagonistic activities were tested against seven plant pathogens. Strain JT-2F is able to produce proteases and cellulase to degrade the protein and cellulose components of cell walls of C. dematium, respectively. This results in mycelia damage which leads to inhibition of the growth of C. dematium. Strain JT-2F was identified as Streptomyces tsukiyonensis based on morphological traits and 16S rDNA sequence analysis.

황토로부터 분리한 Bacillus licheniformis의 항진균 chitinase 생산과 효소 특성 (Production and Characterization of Antifungal Chitinase of Bacillus licheniformis Isolated from Yellow Loess)

  • 한귀환;봉기문;김종민;김평일;김시욱
    • KSBB Journal
    • /
    • 제29권3호
    • /
    • pp.131-138
    • /
    • 2014
  • In this study, we isolated two novel chitinase producing bacterial strains from yellow loess samples collected from Jullanamdo province. The chitinase producing bacteria were isolated based on the zone size of clearance in the chitin agar plates. Both of them were gram positive, rod ($2{\sim}3{\times}0.3{\sim}0.4{\mu}m$), spore-forming, and motility positive. They were facultative anaerobic, catalase positive and hydrolyzed starch, gelatin, and casein. From the 16s rRNA gene sequence analysis, the isolates were labeled as Bacillus licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02. The isolates showed higher extracellular chitinase activities than B. licheniformis ATCC 14580 as a control. The optimum temperature and pH for chitinase production were $40^{\circ}C$ and pH 7.0, respectively. Response Surface Methodology (RSM) was used to optimize the culture medium for efficient production of the chitinase. Under this optimal condition, 1.5 times higher chitinase activity of B. licheniformis KYLS-CU02 was obtained. Extracellular chitinases of the two isolates were purified through ammonium sulfate precipitation and anion-exchange DEAE-cellulose column chromatography. The specific activities of purified chitinase from B. licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02 were 7.65 and 5.21 U/mg protein, respectively. The molecular weights of the two purified chitinases were 59 kDa. Further, the purified chitinase of B. licheniformis KYLS-CU01 showed high antifungal activity against Fusarium sp.. In conclusion, these two bacterial isolates can be used as a biopesticide to control pathogenic fungi.