• Title/Summary/Keyword: Anticancer Activity

Search Result 1,257, Processing Time 0.025 seconds

Induction of Apoptosis by Piceatannol in YD-15 Human Oral Cancer Cells (피세아타놀에 의한 YD-15 구강암세포의 세포자가사멸 유도 효과)

  • Lee, Hae-Nim;Jang, Hye-Yeon;Kim, Hyeong-Jin;Shin, Seong-Ah;Choo, Gang-Sik;Park, Byung-Kwon;Kim, Byeong-Soo;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.975-982
    • /
    • 2015
  • Piceatannol (trans-3,4,3',5'-trihydroxystilbene), a natural stilbene, is an analogue of resveratrol. In the present study, possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human oral cancer YD-15 cells were investigated. To investigate whether or not piceatannol has effects on cancer cell viability, human oral YD-15 cells were treated with piceatannol (0, 50, and $100{\mu}M$). Piceatannol treatment ($100{\mu}M$) showed the strongest inhibition of cell proliferation and reduced cell viability in a dose-dependent manner. Chromatin condensation detected by DAPI staining significantly increased in a concentration-dependent manner, indicating apoptosis. Piceatannol treatment activated initiator Bax (pro-apoptotic) and cPARP in a concentration-dependent manner. Further, piceatannol induced down-regulation of Bcl-2 (anti-apoptotic). We also evaluated the activity of piceatannol against oral cavity cancer tumors in mice. Piceatannol-treated nude mice bearing YD-15 xenograft tumors exhibited significantly reduced tumor volume and weight due to the potent effect of piceatannol on tumor cell apoptosis, as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Immunohistochemistry staining showed elevated expression of cleaved-caspase-3 as well as reduced expression of Ki-67 in the piceatannol-treated group. Therefore, piceatannol can be developed as a cancer preventive medicine due to its growth inhibitory effects and induction of apoptosis in human oral cancer cells.

APOPTOTIC EFFECT IN COMBINATION OF CYCLOSPORIN A AND TAXOL ON ORAL SQUAMOUS CELL CARCINOMA CELL LINE THROUGH THE PI-3 KINASE/AKT1 PATHWAY (구강 편평세포암종 세포주에서 Cyclosporin A와 Taxol 투여시 PI-3 kinase/Akt1 Pathway에 의한 세포사멸 병용효과)

  • Kim, Kyu-Young;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.426-436
    • /
    • 2007
  • Oral cancer take up 2-6% of all carcinomas and squamous cell carcinoma, which is the most common type in oral cancer, has a poor prognosis due to its high metastasis and recurrence rates. In treating oral cancer, chemotherapy to the primary, metastasized and recurrent lesion is a very important and useful treatment, even though its widespread usage is limited due to high general toxicity and local toxicity to other organs. Taxol, a microtubule stabilizing agent, is an anticancer drug that induces cell apoptosis by inhibiting depolymerization of microtubules in between the metaphase and anaphase of the cell mitosis. Recently, its effectiveness and mechanism on various tumor has been reported. However, not much research has been done on the application of Taxol to oral squamous cell carcinoma. Cyclosporin A, which is an immunosuppressant, is being used on cancers and when co-administered with Taxol, effectiveness of Taxol is enhanced by inhibition of Taxol induced multidrug resistance. In this study, Cyclosporin A with different concentration of Taxol was co-administered to HN22, the oral squamous cell carcinomacell line. To observe the cell apoptosis and the mechanisms that take part in this process, mortality evaluation of tumor cell using wortmannin, c-DNA microarray, RT-PCR analysis, cytometry analysis and western blotting were used, and based upon the observation on the effect and mechanism of the agent, the following results were obtained: 1. The HN22 cell line viability was lowest when $100{\mu}M$ of Wortmannin and $5{\mu}g/ml$ of Taxol were co-administered, showing that Taxol participates in P13K-AKT1 pathway. 2. In c-DNA microarray, where $1{\mu}g/ml$ of cyclosporine A and 3mg/ml of Taxol were co-administered, no up regulation of AKT1, PTEN and BAD c-DNA that participate in cell apoptosis was observed. 3. When $1{\mu}g/ml$ of Cyclosporin A was applied alone to HN22 cell line, no difference was found in AKT1, PTEN and BAD mRNA expression. 4. Increased AKT1, mRNA expression was observed when $3{\mu}g/ml$ of Taxol was applied alone to HN22 cell line. 5. When $1{\mu}g/ml$ of Cyclosporin A and Taxol($3{\mu}g/ml\;and\;5{\mu}g/ml$) were co-administered to HN22 cell line, PTEN mRNA expression increased, whereas AKT1 and BAD mRNA decreased. 6. As a result of cytometry analysis, in the group of Cyclosporin A($1{\mu}g/ml$) and Taxol($3{\mu}g/ml$) co-administration, increased Annxin V was observed, which shows that apoptosis occurred by deformation of plasma membrane. However, no significant difference was observed with vary ing concentration. 7. In western blot analysis, no caspase 3 was observed in the group of Cyclosporin A($1{\mu}g/ml$) and Taxol($3{\mu}g/ml$) co-administration. From the results of this study, it can be concluded that synergistic effect can be observed in combination therapy of Taxol and Cyclosporin A on oral squamous cell carcinoma cell line, where decreased activity of the cell line was observed. This resulted in decreased AKT1 and BAD mRNA and increased PTEN mRNA expression and when wortmannin and Taxol were co-administered, the viability decreased which confirms that Taxol decreases the viability of tumor cell line. Hence, when Taxol and cyclosporine A are co-administered, it can be assumed that cell apoptosis occurs through AKt1 pathway.

Effects of BCG on the DNA Synthesis and Ultrastructure of Mouse Gastric Mucosal Epithelial Cells Inoculated with Ehrlich Carcinoma Cells (BCG가 Ehrlich 암세포를 이식한 생쥐의 위점막 상피세포의 DNA합성 및 미세구조에 미치는 영향)

  • Ko, Jeong-Sik;Ryoo, In-Sang;Park, Kyung-Ho;Park, Dae-Kyoon
    • Applied Microscopy
    • /
    • v.39 no.3
    • /
    • pp.205-218
    • /
    • 2009
  • This experiment was performed to evaluate the morphological responses of the gastric epithelial cells of the mouse, inoculated with Ehrlich carcinoma cells in the inguinal area, following administration of BCG. Healthy adult ICR mice weighing 25 gm each were divided into normal and experimental groups (tumor control group and BCG-treated group). In the experimental groups, each mouse was inoculated with $1{\times}10^7$ Ehrlich carcinoma cells subcutaneously in the inguinal area. From next day after inoculations, 0.2 mL of saline or BCG (0.5 mL/25 g B.W.: $0.03{\times}10^8{\sim}0.32{\times}10^8$ CFU) were injected subcutaneously to the animals every other day, respectively. The day following the 7th injection of saline or BCG, each mouse was injected with a single dose of 0.7 ${\mu}Ci/g$ of methyl-$^3H$-thymidine (25 Ci/mmol, Amersham Lab., England) through tail vein. Seventy minutes after the thymidine injection, animals were sacrificed, and gastric tissues were taken and fixed in 10% neutral formalin. Deparaffinized sections were coated with autoradiographic emulsion EM-1 (Amersham Lab., England) in a dark room. The number of labeled epithelial cells in the gastric mucosae (mean number of labeled epithelial cells per 3.5 mm length of mucosa) were observed and calculated. And for electron microscopic observation, gastric tissues were prefixed with 2.5% glutaraldehyde-1.5% paraformaldehyde solution, followed by post-fixation with 1% osmium tetroxide solution. On the light microscopic study, gastric mucosae had no morphological changes following the injection of BCG. On the electron microscopic study, in the BCG-treated mice, myelin figures and multivesicular bodies within the gastric epithelial cells were observed more frequently than in those of the normal control ones. On the autoradiographic study, number of the labeled cells of normal control, tumor control and BCG-treated mice were 380.2 (${\pm}31.35$), 426.1 (${\pm}28.43$) and 301.8 (${\pm}34.63$), respectively. In the BCG-treated mice, poorly-labeled cells containing only a few silver grains of 3H-thymidine were observed more frequently as compared in those of the normal control and tumor control ones. From the above results, BCG may suppress the DNA synthesis of the gastric epithelial cells, but does not results severe fine structural defect on the gastric epithelial cells. These results suggest that BCG is expected as one of the effective supplemental anticancer drugs.

Effect of Korean Mistletoe Extract M11C (Non-lectin Components) on the $TNF-\alpha$ Expression and Secretion from Human Peripheral Blood Monocytes (한국산 겨우살이 추출물 M11C (렉틴 구성물질)가 단구세포의 $TNF-\alpha$ 유전자 발현유도 및 분비에 미치는 효과)

  • Jun, Myung-Ha;Kang, Tae-Bong;Chang, Sung-Ho;Choi, Wahn-Soo;Seong, Nak-Sul;Her, Erk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.1
    • /
    • pp.30-37
    • /
    • 2007
  • It is well-known that Korean mistletoe (Viscum album) extract has an immune activity and anticancer effect. In this study, Korean mistletoe extract, M11C (non-lectin components), was used to examine whether this extract might activate human peripheral monocyte to produce tumor necrosis $factor-\alpha$ $(TNF-\alpha)$. To examine the effect of M11C on the production of $TNF-\alpha$ from monocyte, the monocyte were stimulated by the M11C, and then collected the supernatant (M11C stimulated monocyte-conditioned media; MCM). MCM was treated to the $TNF-\alpha$ sensitive L929 cells, and then L929 cytotoxicity was measured by means of MTT. MCM had cytotoxic effect on L929. And the cytotoxic effect of MCM on L929 was almost abolished by $anti-TNF-\alpha$ antibody. These data indicated that MCM contained $TNF-\alpha$, suggesting the $TNF-\alpha$ generation from M11C-stimulated monocyte. This suggestion was confirmed from the data that $TNF-\alpha$ was highly detected in MCM by immunoblotting technique. M11C effect on $TNF-\alpha$ production from monocyte was in the dose and stimulating time dependent manners. Also the effect of M11C on the expression of $TNF-\alpha$ mRNA from monocyte was shown in the dose and stimulating time dependent manners. As a result, Korean mistletoe extract, M11C, could be used for an immunostimulator.

Gene Expression of Enzymes Related to Glutathione Metabolism in Anticancer Drug-resistant L1210 Sublines (항암제 내성 L1210세포의 Glutathione 대사 관련효소 유전자의 발현 양상)

  • Kim, Seong-Yong;Kim, Jae-Ryong;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.1
    • /
    • pp.32-47
    • /
    • 1995
  • Glutathione(GSH) has a very important role in detoxification of cells and is closely related to antitumor drug-resistance of cancer cells. In order to evaluate the importance of glutathione metabolism in the drug-resistant cancer cells, the concentration of celluar GSH and activities of ${\gamma}$-glutamylcysteine synthetase(GCS), ${\gamma}$-glutamyl transpeptidase (GGT) and glutathione S-transferases(GST) in the adriamycin, vincristine, or cisplatin resistant L1210 (L1210AdR, L1210VcR, or L1210Cis) sublines were measured. Expression and amplification of GCS, GGT, and GST-${\pi}$ genes were also observed in the parent Ll210 and the drug-resistant Ll210 sublines. The concentration of GSH was increased 5.34 fold in L1210Cis, 2.83 fold in L1210VcR, and 1.78 fold in L1210AdR, compared to L1210. The activities of GCS and GGT were increased in drug-resistant L1210 sublines. The GST activity was increased in L1210VcR and L1210Cis but decreased in L1210AdR compared to Ll210. Expression of GCS, GGT, and GST-${\pi}$ genes were increased in the resistant L1210 sublines compare to the parent L1210 in northern blot analyses. Overexpression of GCS, GGT, and GST-${\pi}$ were observed in the resistant sublines, and the increases of the concentration of glutathione and the activities of GCS and GGT in the resistant sublines may be involved in a part of the drug-resistance in the resistant sublines.

  • PDF

Emodin Studies on Anti-inflammatory and Skin Barrier Improvement Activities (Emodin의 항염 및 피부장벽개선 활성 연구)

  • Kim, Se-Gie;Choi, Jae Gurn;Jang, Young-Ah
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1383-1392
    • /
    • 2021
  • It has been reported that emodin, a major pharmacologically active ingredient of herbal medicines such as Polygonum cuspidatum, Polygonum multiflorum, Rheum palmatum, and Aloe vera, is effective in antioxidant, antibacterial, anti-inflammatory, anticancer, and liver protection. In this study, to investigate the potential of emodin to be used as a skin disease and functional material, the activity related to the improvement of inflammation and skin barrier function was confirmed. To observe the anti-inflammatory effect on HaCaT cells, which are human keratinocytes, cytokine inhibition was confirmed by ELISA kit and protein expression by western blot. In HaCaT cells activated with TNF-α (10 ng/mL)/IFN-γ (10 ng/mL), emodin was treated with each concentration (5, 10, 20, 40) µM. As a result, It was confirmed that the production amount of TNF-α, IL-1β and IL-6 decreased as the concentration of emodin increased. In the experimental results on the expression levels of inflammation-related proteins iNOS and COX-2, it was confirmed that 48% of iNOS and 29% of COX-2 were inhibited compared to control at a concentration of 20 µM of emodin. As an indicator of skin barrier function improvement, the mRNA expression level of filaggrin, involucrin, and loricirn and the production amount of filaggrin, involucrin, and loricirn were confirmed. and excellent results were obtained with an emodin concentration-dependent increase. In particular, filaggrin, which was produced twice as much as the control at a concentration of 20 µM, is a protein involved in the formation of NMF, a natural moisturizing factor, and is known to play an important role in moisturizing the stratum corneum. In conclusion, it was confirmed that emodin can be used as a material for improving inflammation and improving skin barrier function, which is part of the potential for use as a skin disease and functional material. It is believed that if additional research is performed in the future, the scope of its application can be further expanded.

Anti-Cancer Effect of Ursolic Acid in Melanoma Cell A375SM and A375P (Ursolic acid의 악성 흑색종 세포주 A375SM과 A375P에서의 항암효능)

  • Woo, Joong-Seok;Kim, Na-Won;Lee, Jin-Gyu;Kim, Jae-Hyuk;Lim, Da-Young;Kang, Shin-Woo;Kim, Sung-Hyun;Yoo, Eun-Seon;Lee, Jae-Han;Han, So-Hee;Park, Young-Seok;Kim, Byeong-Soo;Kim, Sang-Ki;Park, Byung-Kwon;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.183-190
    • /
    • 2019
  • Ursolic acid is recognized for various effects such as anti-cancer, antioxidant, and anti-inflammatory activity. In this study, we confirmed the anti-cancer effect of ursolic acid on human melanoma cancer cells, A375SM and A375P. Survival rate of the melanoma cells was confirmed by MTT assay and the proliferation rate was confirmed by wound healing assay. The rate of apoptotic bodies was confirmed by DAPI staining, and apoptosis rate was confirmed by flow cytometry. The induction of apoptosis protein was examined by western blotting according to the concentration of ursolic acid in melanoma cells. The survival and proliferation rates of melanoma cells were decreased according to the treatment concentrations of ursolic acid. DAPI staining showed that chromosomal condensation of melanoma cells was increased with increasing concentrations of ursolic acid, and increased apoptosis rate of melanoma cells by ursolic acid was confirmed by flow cytometry. We also confirmed by western blotting that cleaved-PARP and Bax were increased and Bcl-2 was decreased at $12{\mu}M$ concentration of uricolic acid in melanoma cells. This study was carried out at low concentrations of ursolic acid, 0 to $20{\mu}M$, and analyzed 24 h after treatment. As a result of this study, it is thought that ursolic acid has the anti-cancer effect through the regulation of apoptosis-related proteins in melanoma cells A375SM and A375P.