• 제목/요약/키워드: Antibody library

검색결과 68건 처리시간 0.022초

Use of Antibody Displayed Phage for the Detection of Dextran Using a Dipstick Assay and Transmission Electron Micrograph

  • Kim Du-Woon;Day Donal F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1316-1319
    • /
    • 2006
  • An antibody displayed phage collection (SBAE-2R), screened from a human synthetic phage antibody library (Fab 21ox), was used for the determination of dextran. The dextran-binding affinity was determined by serologically specific transmission electron microscopy (TEM) and a paper dipstick assay. The phage collection was distributed over the dextrancoated grids with 39$\pm$25 phages/$\mu$m$^2$ on the grids. Phages were not seen on dextran-coated grids exposed to the Fab 2lox phage library. The phage collection (SBAE-2R) produced 54$\pm$3 color normalized intensity (N.I.) from 125 ppm to 1,000 ppm of dextran and 5$\pm$1 (N.I.) for 63 ppm of dextran in a paper dipstick assay. This research extends the analytical options for dextran analysis by antibody displayed phage with a minimum of equipment usage.

Antibody Engineering

  • Hong, Hyo-Jeong;Kim, Sun-Taek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권3호
    • /
    • pp.150-154
    • /
    • 2002
  • Monoclonal antibodies (Mabs) have been used as diagnostic and analytical reagents since hybridoma technology was invented in 1975. In recent years, antibodies have become increasingly accepted as therapeutics for human diseases, particularly for cancer, viral infection and autoimmune disorders. An indication of the emerging significance of antibody-based therapeutics is that over a third of the proteins currently undergoing clinical trials in the United States are antibodies. Until the late 1980's, antibody technology relied primarily on animal immunization and the expression of engineered antibodies. However, the development of methods for the expression of antibody fragments in bacteria and powerful techniques for screening combinatorial libraries, together with the accumulating structure-function data base of antibodies, have opened unlimited opportunities for the engineering of antibodies with tailor-made properties for specific applications. Antibodies of low immunogenicity, suitable for human therapy and in vivo diagnosis, can now be developed with relative ease. Here, antibody structure-function and antibody engineering technologies are described.

Isolation and Characterization of Human scFv Molecules Specific for Recombinant Human Heat Shock Protein (HSP) 70.1

  • Baek, Hyun-jung;Lee, Jae-seon;Seo, Jeong-sun;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.7-15
    • /
    • 2004
  • Background: The heat shock proteins (HSPs) play an important role in cellular protection mechanisms against physical or chemical stresses. In this study scFv antibodies specific for human HSP70.1 were isolated from a semi-synthetic human scFv library with the ultimate goal of developing anti-HSP70.1 intracellular antibody (intrabody) that may offer an attractive alternative to gene targeting to study the function of the protein in cells. Methods: A semi-synthetic human scFv display library ($5{\times}10^{8}$ size) was constructed using pCANTAB-5E vector and the selection of the library against bacterially expressed recombinant human HSP70.1 was attempted by panning. Results: Three positive clones specific for recombinant HSP70.1 were identified. All three clones used $V_{H}$ subgroup III. On the other hand, $V_{L}$ of two clones belonged to the kappa light chain subgroup I, but the other utilized $V_{k}$ subgroup IV Interestingly, these scFv molecules specifically reacted to the recombinant HSP70.1, yet failed to recognize native HSP70 induced in U937 human monocytic cells by heat treatment. Conclusion: Our results indicated that affinity selection of an scFv phage display library using recombinant antigens produced in E. coli might not guarantee the isolation of scFv antibody molecules specific for a native form of the antigen. Therefore, the source of target antigens needs to be chosen carefully in order to isolate biofunctional antibody molecules.

초파리 신경계특이적인 단일클론항체의 제작과 그 항원의 국재 (Monoclonal Antibody Recognizing Nervous System Specific Protein of Drosophila melanogaster)

  • 윤춘식
    • 생명과학회지
    • /
    • 제8권5호
    • /
    • pp.571-575
    • /
    • 1998
  • 초파리(Drosophila melanogaster)의 두부를 항원으로 사용하여 신경계 특이적인 단일클론항체를 제작하였다. 이 항체의 항원은 expression cDNA library screen을 한 결과 tyrosine kinase substrate의 일종인 disabled 분자를 인식하고, DNA sequencing결과 disabled 단백질의 C-말단부분인 7427에서 8761bp 사이를 특이적으로 인식한다는 것을 알 수 있었다. 이 항원의 국재를 조사한 결과 초기발생단계의 배에서는 중추신경계에 강하게 발현되었으며 성충에서는 시신경계와 뇌신경계 그리고 흉부신경계의 축색돌기가 밀집한 부분에 특이적으로 발현되었고, 또한 근육신경에서도 발현되는 것을 알 수 있었다. 따라서 disabled 분자는 배발달단계에서 중추신경계의 발생에 중요한 역할을 하는 것으로 예상되고, 성체에서는 신경계의 축색에서 뿐 아니라 근신경계에서도 어떤 기능을 수행하는 것으로 사료된다.

  • PDF

Antibody 제작을 위한 human serine palmitoyltransferase 유전자의 발현 (Expression of Human Serine Palmitoyltransferase Genes for Antibody Development)

  • 김희숙
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.315-319
    • /
    • 2004
  • 사람의 serine palmitoyltransferase(SPT, EC 2.3.1.50)에 대한 항체를 제작하기 위하여 E. coli발현 vector인 pRset vector에 SPTLC1 및 SPTLC2 유전자를 subcloning하고 BL21 (DE3)pLys cell에 발현시켰다. 포유동물의 SPT는 원핵세포의 SPT homodimer와는 달리 SPTLC1 및 SPTLC2 2개의 sub-unit로 된 heterodimer이다. Human embryo kidney cell인 HEK293 cell의 total RNA로부터 RT-PCR을 행하여 cDNA library를 얻은 다음 SPTLC1 및 SPTLC2의 특이적인 primer 들을 이용하여 PCR을 행하였다. SPTLC1 및 SPTLC2 DNA를 hexahistidine fusion 단백질을 발현시킬 수 있는 pRset vector에 cloning하여 pRsetB/SPTLC1 및 pRsetA/SPTLC2를 얻고 염기서열을 확인하였다. 재조합 plasmid를 발현세포인 BL21 cell에 형질전환시킨 다음 ampicillin 및 chroramphenicol 배지에서 선별하여 재조합세포를 얻었다. 1 mM IPTG로서 발현을 유도하였으며 세포 단백질을 SDS-PAGE로 분리한 다음 His-tag antibody로 western blotting을 행하여 SPTLC 및 SPTLC2가 발현되었음을 확인하였다.

Affinity Maturation of an Anti-Hepatitis B Virus PreS1 Humanized Antibody by Phage Display

  • Yang, Gi-Hyeok;Yoon, Sun-Ok;Jang, Myung-Hee;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.528-533
    • /
    • 2007
  • In a previous study we generated an anti-Hepatitis B Virus (HBV) preS1 humanized antibody (HzKR127) that showed in vivo HBV-neutralizing activity in chimpanzees. However, the antigen-binding affinity of the humanized antibody may not be sufficient for clinical use and thus affinity maturation is required for better therapeutic efficacy. In this study, phage display technique was employed to increase the affinity of HzKR127. All six amino acid residues (Glu95-Tyr96-Asp97-Glu98-Ala99-Tyr100) in the heavy (H) chain complementary-determining region 3 (HCDR3) of HzKR127 were randomized and phage-displayed single chain Fv (scFv) library was constructed. After three rounds of panning, 12 different clones exhibiting higher antigen-binding activity than the wild type ScFv were selected and their antigen-binding specificity for the preS1 confirmed. Subsequently, five ScFv clones were converted to whole IgG and subjected to affinity determination. The results showed that two clones (B3 and A19) exhibited an approximately 6 fold higher affinities than that of HzKR127. The affinity-matured humanized antibodies may be useful in anti-HBV immunotherapy.

Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발 (Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique)

  • 이성락;송은경;정영주;이영이;김익중;최인학;박세광
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

항체 : 치료제로서의 부활 (Resurrection of antibody as a therapeutic drug)

  • 정홍근;정준호
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.7-13
    • /
    • 2001
  • Currently 18 monoclonal antibodies were approved by FDA for inj ection into humans for therapeutic or diagnostic purpose. And 146 clinical trials are under way to evaluate the efficacy of monoclonal antibodies as anti-cancer agents, which comprise 9 % of clinical trials in cancer therapy field. When considering a lot of disappointment and worries existed in this field during the past 15 years, this boom could be called as resurrection. Antibodies have several merits over small molecule drug. First of all it is easier and faster in development, as proper immunization of the target proteins usually raises good antibody response. The side effects of antibodies are more likely to be checked out in immunohistomchemical staining of whole human tissues. Antibody has better pharmacokinetics, which means a longer half-life. And it is non-toxic as it is purely a "natural drug. Vast array of methods was developed to get the recombinant antibodies to be used as drug. The mice with human immunoglobulin genes were generated. Fully human antibodies can be developed in fast and easy way from these mice through immunization. These mice could make even human monoclonal antibodies against any human antigen like albumin. The concept of combinatorial library was also actively adopted for this purpose. Specific antibodies can be screened out from phage, mRNA, ribosomal library displaying recombinant antibodies like single chain Fvs or Fabs. Then the coding genes of these specific antibodies are obtained from the selected protein-gene units, and used for industrial scale production. Both $na\ddot{i}ve$ and immunized libraries are proved to be effective for this purpose. In post-map arena, antibodies are receiving another spotlight as molecular probes against numerous targets screened out from functional genomics or proteomics. Actually many of these antibodies used for this purpose are already human ones. Through alliance of these two actively growing research areas, antibody would play a central role in target discovery and drug development.

  • PDF

Generation and Characterization of a Neutralizing Human Monoclonal Antibody to Hepatitis B Virus PreS1 from a Phage-Displayed Human Synthetic Fab Library

  • Jo, Gyunghee;Jeong, Mun Sik;Wi, Jimin;Kim, Doo Hyun;Kim, Sangkyu;Kim, Dain;Yoon, Jun-Yeol;Chae, Heesu;Kim, Kyun-Hwan;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1376-1383
    • /
    • 2018
  • The hepatitis B virus (HBV) envelope contains small (S), middle (M), and large (L) proteins. PreS1 of the L protein contains a receptor-binding motif crucial for HBV infection. This motif is highly conserved among 10 HBV genotypes (A-J), making it a potential target for the prevention of HBV infection. In this study, we successfully generated a neutralizing human monoclonal antibody (mAb), 1A8 (IgG1), that recognizes the receptor-binding motif of preS1 using a phage-displayed human synthetic Fab library. Analysis of the antigen-binding activity of 1A8 for different genotypes indicated that it can specifically bind to the preS1 of major HBV genotypes (A-D). Based on Bio-Layer interferometry, the affinity ($K_D$) of 1A8 for the preS1 of genotype C was 3.55 nM. 1A8 immunoprecipitated the hepatitis B virions of genotypes C and D. In an in vitro neutralization assay using HepG2 cells overexpressing the cellular receptor sodium taurocholate cotransporting polypeptide, 1A8 effectively neutralized HBV infection with genotype D. Taken together, the results suggest that 1A8 may neutralize the four HBV genotypes. Considering that genotypes A-D are most prevalent, 1A8 may be a neutralizing human mAb with promising potential in the prevention and treatment of HBV infection.

Screening of the Antigen Epitopes of Basic Fibroblast Growth Factor by Phage Display

  • Xiang, Junjian;Zhong, Zhenyu;Deng, Ning;Zhong, Zhendong;Yang, Hongyu
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.290-293
    • /
    • 2005
  • In order to investigate the epitope of basic fibroblast growth factor (bFGF) and its immunogenicity, the epitopes of bFGF were screened from the phage display library with monoclonal antibody GF22, which can neutralize the bio-activity of bFGF. By three rounds of screening, the positive phage clones with bFGF epitopes were selected, which can effectively block the bFGF to bind with GF22. Sequence analysis showed that the epitopes shared a highly conservative sequence (Leu-Pro-Pro/Leu-Gly-His-Phe/Ile-Lys). The sequence of PPGHFK was located at 22-27 of the bFGF. The specific immuno-response of mouse could be highly induced by phage clones with the epitopes. And the anti-bFGF activity induced by LPGHFK was 3 times higher than the original sequence, which showed that the mimetic peptide LPLGHIK might be used as a tumor vaccine in the prevention and treatment of tumor.