Isolation and Characterization of Human scFv Molecules Specific for Recombinant Human Heat Shock Protein (HSP) 70.1

  • Baek, Hyun-jung (IG Therapy Co., Kangwon National University) ;
  • Lee, Jae-seon (ILCHUN Molecular Medicine Institute MRC and Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Seo, Jeong-sun (ILCHUN Molecular Medicine Institute MRC and Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Cha, Sang-hoon (IG Therapy Co., Kangwon National University, Division of Biotechnology, College of Agriculture and Life Science, Kangwon National University)
  • Published : 2004.03.31

Abstract

Background: The heat shock proteins (HSPs) play an important role in cellular protection mechanisms against physical or chemical stresses. In this study scFv antibodies specific for human HSP70.1 were isolated from a semi-synthetic human scFv library with the ultimate goal of developing anti-HSP70.1 intracellular antibody (intrabody) that may offer an attractive alternative to gene targeting to study the function of the protein in cells. Methods: A semi-synthetic human scFv display library ($5{\times}10^{8}$ size) was constructed using pCANTAB-5E vector and the selection of the library against bacterially expressed recombinant human HSP70.1 was attempted by panning. Results: Three positive clones specific for recombinant HSP70.1 were identified. All three clones used $V_{H}$ subgroup III. On the other hand, $V_{L}$ of two clones belonged to the kappa light chain subgroup I, but the other utilized $V_{k}$ subgroup IV Interestingly, these scFv molecules specifically reacted to the recombinant HSP70.1, yet failed to recognize native HSP70 induced in U937 human monocytic cells by heat treatment. Conclusion: Our results indicated that affinity selection of an scFv phage display library using recombinant antigens produced in E. coli might not guarantee the isolation of scFv antibody molecules specific for a native form of the antigen. Therefore, the source of target antigens needs to be chosen carefully in order to isolate biofunctional antibody molecules.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Khazaeli MB, Conry RM, LoBuglio AF: Human immune response to monoclonal antibodies. J Immunother 15;42-52, 1994 https://doi.org/10.1097/00002371-199401000-00006
  2. Baca M, Presta LG, O'Connor SJ, Wells JA: Antibody humanization using monovalent phage display. J Biol Chem 272;10678-10684, 1997 https://doi.org/10.1074/jbc.272.16.10678
  3. Barbas CF, Burton DR: Selection and evolution of highaffinity human anti-viral antibodies. Trends Biotech 14;230-234, 1996 https://doi.org/10.1016/0167-7799(96)10029-9
  4. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G: By-passing immunization: Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222;581-597, 1991 https://doi.org/10.1016/0022-2836(91)90498-U
  5. Hoogenboom HR, Winter G: By-passing immunization: Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227; 381-388, 1992 https://doi.org/10.1016/0022-2836(92)90894-P
  6. Richardson JH, Marasco WA: Intracellular antibodies: development and therapeutic potential. Trends in Biotechnol 13;306-310, 1995 https://doi.org/10.1016/S0167-7799(00)88970-2
  7. Richardson JH, Sodroski JG, Waldmann TA, Marasco WA:Phenotypic knockout of the high-affinity human interleukin 2 receptor by intracellular single-chain antibodies against the alpha subunit of the receptor. Proc Natl Acad Sci USA 92; 3137-3141, 1995 https://doi.org/10.1073/pnas.92.8.3137
  8. Beerli RR, Wels W, Hynes NE: Intracellular expression of single chain antibodies reverts ErbB-2 transformation. J Biol Chem 269;23931-23936, 1994
  9. Alvarez RD, Barnes MN, Gomez-Navarro J, Wang M, Strong TV, Arafat W, Arani RB, Johnson MR, Roberts BL, Siegal GP, Curiel DT: A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clin. Cancer Res 6;3081-3087, 2000
  10. Biocca S, Pierandrei-Amaldi P, Cattaneo A: Intracellular expression of anti-p21ras single chain Fv fragments inhibits meiotic maturation of xenopus oocytes. Biochem Biophys Res Commun 197;422-427, 1993 https://doi.org/10.1006/bbrc.1993.2496
  11. Chen SY, Khouri Y, Bagley J, Marasco WA: Combined intraand extracellular immunization against human immunodeficiency virus type 1 infection with a human anti-gp120 antibody. Proc Natl Acad Sci USA 91;5932-5936, 1994 https://doi.org/10.1073/pnas.91.13.5932
  12. Mhashilkar AM, Biswas DK, LaVecchio J, Pardee AB, Marasco WA: Inhibition of human immunodeficiency virus type 1 replication in vitro by a novel combination of anti-Tat single-chain intrabodies and NF-kappa B antagonists. J Virol 71;6486-6494, 1997
  13. Marasco WA, LaVecchio J, Winkler A: Human anti- HIV-1 tat sFv intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J Immunol Meth 231;223-238, 1999 https://doi.org/10.1016/S0022-1759(99)00159-3
  14. Biocca S, Ruberti F, Tafani M, Pierandrei-Amaldi P, Cattaneo A: Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Biotechnology (NY) 13;1110-1115, 1995 https://doi.org/10.1038/nbt1095-1110
  15. Moseley PL: Heat shock proteins and the inflammatory response. Ann NY Acad Sci 856;206-213, 1993
  16. Samali A, Cotte TG: Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223;63-70, 1996 https://doi.org/10.1006/excr.1996.0058
  17. Kiang JG and Tsokos GC: Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol Ther 80;183-201, 1998 https://doi.org/10.1016/S0163-7258(98)00028-X
  18. Georgopoulos C, Welch WJ: Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9;601-634, 1993 https://doi.org/10.1146/annurev.cb.09.110193.003125
  19. Hunt CR, Gasser DL, Chaplin DD, Pierce JC, Kozak CA:Chromosomal localization of five murine HSP70 gene family members: Hsp70-1, Hsp70-2, Hsp70-3, Hsc70t, and Grp78. Genomics 16;193-198, 1993 https://doi.org/10.1006/geno.1993.1158
  20. Allen RL, O'Brien DA, Jones CC, Rockett DL, Eddy EM: Expression of heat shock proteins by isolated mouse spermatogenic cells. Mol Cell Biol 8;3260-3266, 1988 https://doi.org/10.1128/MCB.8.8.3260
  21. Zakeri ZF, Wolgemuth DJ, Hunt CR: Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol 8;2925-2932, 1988 https://doi.org/10.1128/MCB.8.7.2925
  22. Kwon S, Young C, Kim D, Choi H, Kim K, Chung J, Eun H, Park K, Oh C, Seo J: Impaired repair ability of hsp70.1KO mouse after UVB irradiation. J Dermatol Sci 28;144-151, 2002 https://doi.org/10.1016/S0923-1811(01)00156-6
  23. Lee S, Kim M, Yoon B, Kim Y, Ma S, Roh J, Lee J, Seo J: Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke 32;2905-2912, 2001 https://doi.org/10.1161/hs1201.099604
  24. Huang L, Mivechi NF, Moskophidis D: Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene. Mol Cell Biol 21;8575-8591, 2001 https://doi.org/10.1128/MCB.21.24.8575-8591.2001
  25. Leppa S, Kajanne R, Arminen L, Sistonen L: Differential induction of Hsp70-encoding genes in human hematopoietic cells. J Biol Chem 276;31713-31719, 2001 https://doi.org/10.1074/jbc.M104375200
  26. McCafferty J and Johnson KS: Construction and screening of antibody display libraries. In: Kay BK, Winter J, McCafferty J eds.: Phage display of peptides and proteins, p79-111, Academic Press, 1996
  27. McCafferty J, Griffiths AD, Winter G, Chiswell DJ: Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348;552-554, 1990 https://doi.org/10.1038/348552a0
  28. Li CY, Lee JS, Ko YG, Kim JI, Seo JS: Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275;25665-25671, 2000 https://doi.org/10.1074/jbc.M906383199
  29. Chowdhury PS, Chang K, Pastan I: Isolation of anti- mesothelin antibodies from a phage display library. Mol Immunol 34;9-20, 1997 https://doi.org/10.1016/S0161-5890(97)00011-4
  30. Huls GA, Heijnen IA, Cuomo ME, Koningsberger JC, Wiegman L, Boel E, van der Vuurst de Vries AR, Loyson SA, Helfrich W, van Berge Henegouwe GP, van Meijer M, de Kruif J, Logtenberg TA: recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments. Nat Biotechnol 17;276-281, 1999 https://doi.org/10.1038/7023
  31. Kettleborough CA, Ansell KH, Allen RW, Rosell-Vives E, Gussow DH, Bendig MM: Isolation of tumor cell-specific single-chain Fv from immunized mice using phage-antibody libraries and the re-construction of whole antibodies from these antibody fragments. Eur J Immunol 24;952-958, 1994 https://doi.org/10.1002/eji.1830240426
  32. Barbara K, Robert R, Silke R, Christine R, Michael T, Elisabeth T, Manqiu C, Torsten D, David F, Adolf H, Landon I, Achim K, Matthias M, Peter P, Xian-Qin M, Pobert S, Peter S, Jill W, Joachim W, Titus K: High-throughput generation and engineering of recombinant human antibodies. J Immunol Meth 254;67-84, 2001 https://doi.org/10.1016/S0022-1759(01)00398-2
  33. Harper K, Toth RL, Mayo MA, Torrance L: Properties of a panel of single chain variable fragments against potato leafroll virus obtained from two phage display libraries. J Virol Meth 81;159-168, 1999 https://doi.org/10.1016/S0166-0934(99)00071-3