• Title/Summary/Keyword: Antibiotic resistance determinants

Search Result 11, Processing Time 0.025 seconds

Biofilm Formation and Antibiotic Resistance in Salmonella Typhimurium Are Affected by Different Ribonucleases

  • Saramago, Margarida;Domingues, Susana;Viegas, Sandra Cristina;Arraiano, Cecilia Maria
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.8-12
    • /
    • 2014
  • Biofilm formation and antibiotic resistance are important determinants for bacterial pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that they have an important role in virulence mechanisms. In this report, we show that ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation in Salmonella.

PERIODONTOPATHIC BACTERIA AND ANTIBIOTIC RESISTANCE GENES OF ORAL BIOFILMS IN CHILDREN (어린이 치면세균막에서 치주질환원인균과 항생제 내성유전자의 출현율)

  • Kim, Seon-Mi;Choi, Nam-Ki;Cho, Seong-Hoon;Lee, Seok-Woo;Lim, Hoi-Jeong;Lim, Hoi-Soon;Kang, Mi-Sun;Oh, Jong-Suk
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.2
    • /
    • pp.170-178
    • /
    • 2011
  • The purpose of this study was to assess the prevalence of periodontopathic bacteria and resistance determinants from oral biofilm of children. Subgingival dental plaque was isolated from 87 healthy children, and PCR was performed to determine the presence of 5 periodontal pathogens including P. gingivalis, T. forsythia, T. denticola, F. nucleatum, A. actinomycetemcomitans, and nine resistance genes including tet(Q), tet(M), ermF, aacA-aphD, cfxA, $bla_{SHV}$, $bla_{TEM}$, vanA, mecA. 1. The prevalence of F. nucleatum, T. forsythia. and P. gingivalis was 95.4%, 55.2%, and 40.2%, respectively. In addition. the prevalence of A. actinomycetemc omitans was 5.7%, while T. denticola was 3.4%. 2. In analysis of antibiotic resistance determinants. cfxA, $bla_{TEM}$ and tet(M) were detected in all the samples tested. It was also found that the prevalence of tet(Q) showing tetracycline resistance. $bla_{SHV}$ associated with resistance to ${\beta}$-lactams, ermF exhibiting erythromycin resistance, and, vanA resulting vancomycin resistance was 88.5%, 29.9% 87.4%, and 48.5%, respectively. The aacA-aphD gene showing resistance to aminoglycosides and mecA gene harboring methicillin resistance exhibited the lowest prevalence with 9.2%. 3. In a correlation analysis between periodontopathic pathogens and antibiotic resistance determinants, it was found that there was a significant correlation between T. forsythia and $bla_{SHV}$. Also, P. gingivalis and vanA showed a correlation. Finally, tet(Q) and ermF showed a significant correlation (phi: 0.514) while mecA and vanA also showed a correlation(phi: 0.25).

Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods

  • Lee, Young-Duck;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.263-269
    • /
    • 2016
  • Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

Prevalence of plasmid-mediated quinolone and tetracycline resistance genes in Aeromonas strains isolated from eel (Anguilla japonica) and ornamental fish

  • Gee-Wook Shin;Jun-Hwan Park;Hui-Ju Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.287-292
    • /
    • 2023
  • This study investigated the genetic determinants of plasmid-mediated antibiotic resistance (PMAR) to quinolones and tetracycline in 106 Aeromonas strains isolated from eel (Anguilla japonica, 70 strains) and ornamental fish (36 strains) in Korea. Quinolones and tetracycline resistance phenotypes were found to be widely distributed throughout the both fish groups. However, the prevalence of qnr and tet genes was higher in ornamental fish strains than in eel strains (42.9% vs. 86.1% for qnr and 51.4% vs. 69.4% for tet). In addition, the profiling of the present genetic determinants revealed the dominance of qnrS, tetA, tetE and tetE+qnrS genes for eel strains but of tetA+qnrS qnrS and tetE+qnrS genes for ornamental fish strains. These results indicate that aquaculture and related industries could be a major threat to public health due to the possible spread of PMAR.

Novel Qnr Families as Conserved and Intrinsic Quinolone Resistance Determinants in Aeromonas spp.

  • Sang-Gyu Kim;Bo-Eun Kim;Jung Hun Lee;Dae-Wi Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1276-1286
    • /
    • 2024
  • The environment has been identified as an origin, reservoir, and transmission route of antibiotic resistance genes (ARGs). Among diverse environments, freshwater environments have been recognized as pivotal in the transmission of ARGs between opportunistic pathogens and autochthonous bacteria such as Aeromonas spp. In this study, five environmental strains of Aeromonas spp. exhibiting multidrug resistance (MDR) were selected for whole-genome sequencing to ascertain their taxonomic assignment at the species-level and to delineate their ARG repertoires. Analyses of their genomes revealed the presence of one protein almost identical to AhQnr (A. hydrophila Qnr protein) and four novel proteins similar to AhQnr. To scrutinize the classification and taxonomic distribution of these proteins, all Aeromonas genomes deposited in the NCBI RefSeq genome database (1,222 genomes) were investigated. This revealed that these Aeromonas Qnr (AQnr) proteins are conserved intrinsic resistance determinants of the genus, exhibiting species-specific diversity. Additionally, structure prediction and analysis of contribution to quinolone resistance by AQnr proteins of the isolates, confirmed their functionality as quinolone resistance determinants. Given the origin of mobile qnr genes from aquatic bacteria and the crucial role of Aeromonas spp. in ARG dissemination in aquatic environments, a thorough understanding and strict surveillance of AQnr families prior to the clinical emergence are imperative. In this study, using comparative genome analyses and functional characterization of AQnr proteins in the genus Aeromonas, novel Aeromonas ARGs requiring surveillance has suggested.

Outpatient Antibiotic Prescription Patterns for Respiratory Tract Infections of Infants (소아 호흡기감염 외래환자에 대한 항생제 처방양상)

  • Kim, Yejee;Lee, Suehyung;Park, Sylvia;Na, Hyen Oh;Tchoe, Byongho
    • Health Policy and Management
    • /
    • v.25 no.4
    • /
    • pp.323-332
    • /
    • 2015
  • Background: Antibiotic resistance has been becoming serious challenge to human beings. Overuse of antibiotics, especially, for infants is concerned, but studies are very few for the prescribing pattern of antibiotic use for infants. This study analyzes prescribing patterns of antibiotics in outpatients of preschool children with acute respiratory tract infections in South Korea. Methods: Data are used from 2011 Health Insurance Review & Assessment Services-pediatric patients sample. Inclusion criteria is outpatient children (0 to 5 years) with top five frequent diseases. Prescription rates are analyzed by types of disease, provider, specialty, region, and ages. Binary or multinomial logit models are used to analyze determinants of providers' prescription pattern. Results: The main findings are as follows. First, distributions of prescription rates are shown as L-shape or M-shape depending on the types of disease. Second, the prescription variation is so large among providers, where providers are polarized as a group with low prescription rates and the other group with high prescription rates, though the shapes are shown diversified across types of disease. Third, prescription rates appear to be lower in pediatrics and higher in ENT (ear-nose-throat). Fourth, broad spectrum antibiotics are widely used among children. Finally, the logit analysis shows similar results with descriptive statistics, but partly different results across types of disease. Conclusion: Antibiotics for respiratory tract infections of infants are used excessively with a large variation among providers, and especially broad spectrum antibiotics are used. The prescription guideline for antibiotics should be provided for each specific disease to reduce antibiotic resistance in the future.

Comparative Genomics Approaches to Understanding Virulence and Antimicrobial Resistance of Salmonella Typhimurium ST1539 Isolated from a Poultry Slaughterhouse in Korea

  • Kim, Eunsuk;Park, Soyeon;Cho, Seongbeom;Hahn, Tae-Wook;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.962-972
    • /
    • 2019
  • Non-typhoidal Salmonella (NTS) is one of the most frequent causes of bacterial foodborne illnesses. Considering that the main reservoir of NTS is the intestinal tract of livestock, foods of animal origin are regarded as the main vehicles of Salmonella infection. In particular, poultry colonized with Salmonella Typhimurium (S. Typhimurium), a dominant serotype responsible for human infections, do not exhibit overt signs and symptoms, thereby posing a potential health risk to humans. In this study, comparative genomics approaches were applied to two S. Typhimurium strains, ST1539 and ST1120, isolated from a duck slaughterhouse and a pig farm, respectively, to characterize their virulence and antimicrobial resistance-associated genomic determinants. ST1539 containing a chromosome (4,905,039 bp; 4,403 CDSs) and a plasmid (93,876 bp; 96 CDSs) was phylogenetically distinct from other S. Typhimurium strains such as ST1120 and LT2. Compared to the ST1120 genome (previously deposited in GenBank; CP021909.1 and CP021910.1), ST1539 possesses more virulence determinants, including ST64B prophage, plasmid spv operon encoding virulence factors, genes encoding SseJ effector, Rck invasin, and biofilm-forming factors (bcf operon and pefAB). In accordance with the in silico prediction, ST1539 exhibited higher cytotoxicity against epithelial cells, better survival inside macrophage cells, and faster mice-killing activity than ST1120. However, ST1539 showed less resistance against antibiotics than ST1120, which may be attributed to the multiple resistanceassociated genes in the ST1120 chromosome. The accumulation of comparative genomics data on S. Typhimurium isolates from livestock would enrich our understanding of strategies Salmonella employs to adapt to diverse host animals.

Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolated from Retail Meat in Seoul (서울시내 시판 식육에서 분리한 대장균의 퀴놀론계 항생제 내성 기전 분석)

  • Park, Ji Min;Choi, Sung Sook
    • YAKHAK HOEJI
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The aim of this study was to investigate the prevalence of quinolone resistant E. coli from retail meat and to characterize the resistant determinants. Determination of minimum inhibitory concentration, the sequence analysis of gyrA, gyrB, parC, and parE quinolone resistance determining regions (QRDR), the presences of plasmid mediated quinolone resistance (PMQR) and the expression of efflux pump genes were investigated. Of the total 277 retail meat samples, 67 coli form bacteria were isolated. 15 of 67 isolates showed nalidixic acid resistance and 7 of 15 nalidixic acid resistant isolates were also resistant to ciprofloxacin, moxifloxacin and levofloxacin. 11 of 15 nalidixic acid resistant strains were isolated from chicken, 2 of 15 were isolated from beef and 2 of 15 were isolated from pork samples. 11 of 15 nalidixic acid resistant strains have single mutation at codon 87 (D87N or D87G) in gyrA, 2 of 11 gyrA mutants have double mutations at codon 86 and 87 (L86A and L87I) in parC with mutations at codon 434+445+465 or 429 in gyrB. 2 of 15 resistant isolates harbored qnrS, a PMQR determinant. Over expression of the acrB gene, efflux pump gene (3.93~16.53 fold), was observed in 10 of 15 resistant isolates.

Prevalence and Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolates from Raw Bulk Milk in Gyeonggi-do (원유시료에서 분리한 대장균의 퀴놀론 항생제 내성 기전)

  • Kang, Sowon;Lee, Sangjin;Choi, Sungsook
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • The aim of this study was to investigate the prevalence of quinolone resistant E. coli from raw bulk milk and to characterize the resistance determinants. In this study, the gyrA, gyrB, parC, and parE quinolone resistance determining regions (QRDR) were sequenced from quinolone resistant E. coli isolates. Also, the presence of plasmid-mediated quinolone resistance (PMQR) and the expression of efflux pump genes based on quantitative real-time PCR (qRT-PCR) were investigated. Of the 487 coliform bacteria, 9 strains showed nalidixic acid resistance, and 6 of the 9 nalidixic acid resistant isolates were also ciprofloxacin resistant. These 9 strains had a single mutation at codon 83 (S83L) in gyrA, 2 of them had double mutations at codon 83 and 87 (S83L and D87N) in gyrA and 3 of the 9 isolates had single mutations at codon 80 (S80I) in parC. None of the 9 isolates harbored PMQR determinants. Compared with wild-type E. coli ATCC 25922, an over-expression of the acrB gene (2.15-5.74 fold), encoding the pump component of the AcrAB-TolC efflux pump was observed in 4 of 6 ciprofloxacin resistant isolates. This study identified the quinolone resistance mechanism of E. coli isolated from raw milk samples in Gyeonggi-do.

Outbreaks of Imipenem-Resistant Acinetobacter baumannii Producing Carbapenemases in Korea

  • Jeong Seok-Hoon;Bae Il-Kwon;Park Kwang-Ok;An Young-Jun;Sohn Seung-Ghyu;Jang Seon-Ju;Sung Kwang-Hoon;Yang Ki-Suk;Lee Kyung-Won;Young Dong-Eun;Lee Sang-Hee
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.423-431
    • /
    • 2006
  • Among 53 Acinetobacter baumannii isolates collected in 2004, nine imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Korea. Nine carbapenemase-producing isolates were further investigated in order to determine the mechanisms underlying resistance. These isolates were then analyzed via antibiotic susceptibility testing, microbiological tests of carbapenemase activity, pI determination, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. One outbreak involved seven cases of infection by A. baumannii producing OXA-23 ${\beta}-lactamase$, and was found to have been caused by a single ERIC-PCR clone. During the study period, the other outbreak involved two cases of infection by A. baumannii producing IMP-1 ${\beta}-lactamase$. The two clones, one from each of the outbreaks, were characterized via a modified cloverleaf synergy test and an EDTA-disk synergy test. The isoelectric focusing of the crude bacterial extracts detected nitrocefin-positive bands with pI values of 6.65 (OXA-23) and 9.0 (IMP-1). The PCR amplification and characterization of the amplicons via direct sequencing showed that the clonal isolates harbored $bla_{IMP-1}$ or $bla_{oxA-23}$ determinants. The two clones were characterized by a multidrug resistance phenotype that remained unaltered throughout the outbreak. This resistance encompassed penicillins, extended-spectrum cephalosporins, carbapenems, monobactams, and aminoglycosides. These results appear to show that the imipenem resistance observed among nine Korean A. baumannii isolates could be attributed to the spread of an IMP-lor OXA-23-producing clone. Our microbiological test of carbapenemase activity is a simple method for the screening of clinical isolates producing class D carbapenemase and/or class B $metallo-{\beta}-lactamase$, in order both to determine their clinical impact and to prevent further spread.