Browse > Article
http://dx.doi.org/10.4014/jmb.1508.08042

Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods  

Lee, Young-Duck (Department of Food Science and Engineering, Seowon University)
Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.2, 2016 , pp. 263-269 More about this Journal
Abstract
Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.
Keywords
Genome; metallo-β-lactamase; phage conversion; Staphylococcus aureus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baron ES, Saz AK, Kopecko DJ, Wohlhieter JA. 1977. Transfer of plasmid-borne beta-lactamase in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 12: 270-280.   DOI
2 Brabban AD, Hite E, Callaway TR. 2005. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog. Dis. 2: 287-303.   DOI
3 Casjens SR. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49: 277-300.   DOI
4 Betley MJ, Mekalanos JJ. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229: 185-187.   DOI
5 Bush K, Jacoby GA. 2010. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 54: 969-976.   DOI
6 Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. 2003. Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6: 417-424.   DOI
7 Chambers HF. 2001. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7: 178-182.   DOI
8 Chen J, Novick RP. 2009. Phage-mediated intergeneric transfer of toxin genes. Science 323: 139-141.   DOI
9 Colomer-Lluch M, Jofre J, Muniesa M. 2011. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 3: e17549.   DOI
10 Deghorain M, Van Melderen L. 2012. The staphylococci phages family: an overview. Viruses 4: 3316-3335.   DOI
11 Hawkey PM, Jones AM. 2009. The changing epidemiology of resistance. J. Antimicrob. Chemother. 1: i3-i10.   DOI
12 Hennekinne JA, De Buyser ML, Dragacci S. 2012. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36: 815-836.   DOI
13 Jevons MP, Parker MT. 1964. The evolution of new hospital strains of Staphylococcus aureus. J. Clin. Pathol. 17: 243-250.   DOI
14 Lacey RW. 1984. Mechanisms of resistance to beta-lactam antibiotics in Staphylococcus aureus. Scand. J. Infect. Dis. 42: 64-71.
15 Kahlon AK, Darokar MP, Sharma A. 2012. Probing the evolutionary conserved regions within functional site of drug-resistant target proteins of Staphylococcus aureus: in silico phylogenetic motif profiling approach. Indian J. Biochem. Biophys. 49: 442-450.
16 Lindsay JA, Holden MT. 2004. Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12: 378-385.   DOI
17 Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y. 1998. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 215: 57-67.   DOI
18 Kurlenda J, Grinholc M. 2012. Alternative therapies in Staphylococcus aureus diseases. Acta Biochim. Pol. 59: 171-184.
19 Lee YD, Moon BY, Park JH, Chang HI, Kim WJ. 2007. Expression of enterotoxin genes in Staphylococcus aureus isolates based on mRNA analysis. J. Microbiol. Biotechnol. 17: 461-467.
20 Lowy FD. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest. 111: 1265-1273.   DOI
21 Lyon BR, Skurray R. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol. Rev. 51: 88-134.
22 Manfioletti G, Schneider C. 1988. A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucl. Acids Res. 16: 2873-2884.   DOI
23 Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. 2011. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett. Appl. Microbiol. 52: 559-564.   DOI
24 Pinchuk IV, Beswick EJ, Reyes VE. 2010. Staphylococcal enterotoxins. Toxins 2: 2177-2197.   DOI
25 McDougal LK, Thornsberry C. 1986. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J. Clin. Microbiol. 23: 832-839.
26 Rolain JM, François P, Hernandez D, Bittar F, Richet H, Fournous G, et al. 2009. Genomic analysis of an emerging multiresistant Staphylococcus aureus strain rapidly spreading in cystic fibrosis patients revealed the presence of an antibiotic inducible bacteriophage. Biol. Direct 13: 4.
27 Muniesa M, García A, Miró E, Mirelis B, Prats G, Jofre J, Navarro F. 2004. Bacteriophages and diffusion of betalactamase genes. Emerg. Infect. Dis. 10: 1134-1137.   DOI
28 Novick RP, Christie GE, Penades JR. 2010. The phage-related chromosomal islands of gram-positive bacteria. Nat. Rev. Microbiol. 8: 541-551.   DOI
29 Prescott JF. 2004. Antimicrobial chemotherapy, pp. 26-43. In Hirsh DC, Maclachlan NJ, Walker RL (eds.). Veterinary Microbiology. Blakwell Publishing, Ames.
30 Sabath LD. 1982. Mechanisms of resistance to beta-lactam antibiotics in strains of Staphylococcus aureus. Ann. Intern. Med. 97: 339-344.   DOI
31 Sakoulas G, Moellering RC. 2008. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin. Infect. Dis. 46: S360-S367.   DOI
32 Skippington E, Ragan MA. 2011. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol. Rev. 35: 707-735.   DOI
33 Voladri RK, Kernodle DS. 1998. Characterization of a chromosomal gene encoding type B beta-lactamase in phage group II isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 42: 3163-3168.
34 Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K, et al. 2000. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38: 694-705.   DOI