• 제목/요약/키워드: Antibacterial efficacy

검색결과 194건 처리시간 0.025초

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Bactericidal and wound disinfection efficacy of nanostructured titania

  • Azad, Abdul-Majeed;Aboelzahab, Asem;Goel, Vijay
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.311-347
    • /
    • 2012
  • Infections are caused due to the infiltration of tissue or organ space by infectious bacterial agents, among which Staphylococcus aureus bacteria are clinically most relevant. While current treatment modalities are in general quite effective, several bacterial strains exhibit high resistance to them, leading to complications and additional surgeries, thereby increasing the patient morbidity rates. Titanium dioxide is a celebrated photoactive material and has been utilized extensively in antibacterial functions, making it a leading infection mitigating agent. In view of the property amelioration in materials via nanofication, free-standing titania nanofibers (pure and nominally doped) and nanocoatings (on Ti and Ti6Al4V implants) were fabricated and evaluated to assess their efficacy to mitigate the viability and growth of S. aureus upon brief (30 s) activation by a portable hand-held infrared laser. In order to gauge the effect of exposure and its correlation with the antibacterial activities, both isolated (only titania substrate) and simultaneous (substrate submerged in the bacterial suspension) activations were performed. The bactericidal efficacy of the IR-activated $TiO_2$ nanocoatings was also tested against E. coli biofilms. Toxicity study was conducted to assess any potential harm to the tissue cells in the presence of photoactivated materials. These investigations showed that the photoactivated titania nanofibers caused greater than 97% bacterial necrosis of S. aureus. In the case of titania-coated Ti-implant surrogates, the bactericidal efficacy exceeded 90% in the case of pre-activation and was 100% in the case of simultaneous-activation. In addition to their high bactericidal efficacy against S. aureus, the benignity of titania nanofibers and nanocoatings towards tissue cells during in-vivo exposure was also demonstrated, making them safe for use in implant devices.

CPC-222, A New Fluoroquinolone

  • Lee, Younha
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.12-12
    • /
    • 1997
  • CFC-222 is a novel fluoroqinolone antibacterial agent synthesized and under development by the Cheil Jedang Corporation, Korea. CFC-222 exerts the antibacterial activity by inhibition of bacterial DNA gyrase leading to bactericidal action. In in vitro and in vivo preclinical testing, CFC-222 has been shown to possess a broad spectrum of antibacterial activity. In particular CFC-222 is very potent against Gram-positive bacteria such as Staphylococcus spp., Streptocuccus spp. (in particular penicillin G-resistant and -susceptible S. pneumoniae) and Enterococcus spp. when compared to other quinolones (ciprofloxacin, ofloxacin or lomefloxacin). CFC-222 also showed potent activity against the methicillin resistant clinical isolates of S. aureus (MRSA). Against Gram-negative bacteria (E. coli, Pseudomonas and Sarcina) the activity of CFC-222 was slightly weaker than that of ciprofloxacin, but was more potent than that of ofloxacin or lomefloxacin. In urinary systemic infections caused by both Gram-positive and -negative bacteria, CFC-222 demonstrated a potent therapeutic efficacy in particular against Cram-positive bacteria S. aureus, S. pyrogen 203 and S. pneumonia TypeIII.

  • PDF

생약복합제제(生藥複合製劑)의 약효연구(藥效硏究) (제2보)(第2報) -가미삼황탕(加味三黃湯)이 순환기계(循環器系) 및 항균작용(抗菌作用)에 대(對)하여- (Studies on the Efficacy of Combined Preparations of Crude Drug (II) -The Effect of ‘Kamisamhwang-Tang’ on Cardiovascular System and Antibacterial Activities-)

  • 홍남두;김종우;송일병;김남재
    • 생약학회지
    • /
    • 제12권4호
    • /
    • pp.190-194
    • /
    • 1981
  • It was prevously shown that 'Kamisamhwang-Tang' had been examined for effects of the anticonvulsion, antipyretic, analgesic and sedative. To investigate the effect on cardiovascular system and antibacterial activities, pharmacological studies have been carried out with each extract. The results of this investigation were summarized as follows: 1) 'Kamisamhwang-Tang' depressed central convulsion induced by strychnine, picrotoxine and caffeine in mice. 2) Antipyretic, analgesic and sedative action were observed. 3) Hypotensive effect was observed in rabbits. 4) Antibacterial activities was observed.

  • PDF

Antibacterial and therapeutic effects of a combination of Sophora flavescens and Glycyrrhiza uralensis Fischer ethanol extracts on mice infected with Streptococcus pyogenes

  • Yu, Eun-Ah;Cha, Chun-Nam;Park, Eun-Kee;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • 대한수의학회지
    • /
    • 제54권3호
    • /
    • pp.189-192
    • /
    • 2014
  • This study evaluated the antibacterial effects of a mixture of Sophorae radix and Glycyrrhiza uralensis Fischer (1 : 1) ethanol extracts (SGE) on mice infected with Streptococcus (S.) pyogenes. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of SGE necessary for antibacterial effects against S. pyogenes were $20{\mu}g/mL$. Based on the time-kill curves for S. pyogenes, SGE was effective at $4{\times}$ MIC after 16 h. On Day 12 after challenge, the survival rate of mice treated with 2.0 mg/kg SGE was 60%. In conclusion, SGE had potent in vitro and in vivo antibacterial activities against S. pyogenes.

PREPARATION OF POLYSTYRENE BEADS CONTAINING SULFONAMIDE GROUPS AND THEIR APPLICATION TO POLYMERIC BIOCIDES

  • Kim, Cheol-Jin;Kim, Jee-Yeon;Byun, Jang-Woong;Kim, Jae-Eun;Lee, Yoon-Sik;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제11권6호
    • /
    • pp.325-332
    • /
    • 2006
  • A novel series of polystyrene (PS) beads containing various sulfonamide groups was prepared, and their chemical stabilities in an aqueous solution were tested in order to determine their ability to inactivate microbes. By reacting aminomethyl polystyrene (AM PS) beads or carboxy polystyrene beads with various benzenesulfonic acid derivatives, the sulfonamide groups were introduced on the PS beads. The characteristics of the product beads were analyzed by elementary analysis after the substitution of various sulfonamide groups. Energy Dispersive Spectroscopy (EDS), and FT-IR analysis were used to analyze the elemental functional group composition, respectively. The hydrolytic stabilities of the PS beads containing various sulfonamide groups along with the relationship between the swelling ratio and their hydrophilicity were investigated. The antibacterial activity of the beads was determined by their ability to inactivate E. coli. This study reports that PS beads containing sulfonamide groups had lasting antibacterial efficacy over a satisfactory period, whilst maintaining their chemical stabilities against hydrolysis. The 8 synthesized polymer beads exhibited antibacterial ability.

In vitro and in vivo Activities of SM-101, a Micture of Metampicillin and Sulbactam

  • Choi, Keum-Hwa;Kim, Sook-Kyung;Baek, Moon-Chang;Kim, Byong-Kak;Lee, Dong-Young;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제18권6호
    • /
    • pp.423-426
    • /
    • 1995
  • SM-101 is a mixture of metampicillin and sulbactam(2:1). The antibacterial activities of SM-101 were compared with those of metampicillin, piperacillin and Augmentin. It showed powerful antibacterial activities against major strains. Except P. anruginosa and S. marcescens, the in vitro antibacterial activity of SM-101 was higher than those of metampicillin, piperacillin and Augmentin against Staphylococcus spp., Streptococcus spp., Moganella morganii, E. Coil, and Proteus spp. The $ED_{50}$ values of SM-101 were two-fold or greater than those of metampicillin, piperacillin and Augmentin against $\beta-lactamase$ producing strains, p. mirabilis GN79 and M. morganiii MB4-11. The in vivo efficacy of SM-101 was more active than metampicillin and pipeeracillin and similar to Augmentin against S. aureus Smith, E coli MB4-01 and K. pneumoniae MB4-02.

  • PDF

Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

  • Gan, Lin-Ling;Fang, Bo;Zhou, Cheng-He
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3684-3692
    • /
    • 2010
  • A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1-yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to $25\;{\mu}g/mL$, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)-1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: $25\;{\mu}g/mL$, $50\;{\mu}g/mL$ and $100\;{\mu}g/mL$ in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole.

항균성분의 지속력에 대한 인체적용 시험 평가 (Clinical Evaluation of Residual Effectiveness of Antibacterial Agents)

  • 최서희;김현주;이범천;문태기;김남수
    • 대한화장품학회지
    • /
    • 제39권2호
    • /
    • pp.133-140
    • /
    • 2013
  • 항균비누에 흔히 사용되는 항균성분인 PCMX와 IPMP에 대하여 ASTM E2752-10 (Standard Guide for Evaluation of Residual Effectiveness of Anti- bacterial Personal Cleansing Products)에 기술된 cup scrub method에 따라 항균 지속력을 평가하였다. 건강한 남녀 총 80명의 피험자를 대상으로 한 실험에서 5% PCMX와 0.1% IPMP를 함유한 액체비누는 대조군에 비해서 E. coli와 S. aureus의 수를 통계학적으로 유의하게 감소시켰으며 27시간 동안 항균효과가 지속되는 것을 확인하였다. 항균성분의 지속력에 대한 인체적용 시험은 국내에서는 처음 시행된 것으로 결과와 함께 보고하는 바이다.

Cefatrizine과 clavulanic acid 병합제의 in vitro 및 in vivo 항균력 (Comparative in vitro and in vivo Antibacterial Activities of Cefatrizine/clavulanic Acid Combination and Other $\beta$-lactam Antibiotics)

  • 최성학;김지영;김계원;김원배;심미자
    • Biomolecules & Therapeutics
    • /
    • 제7권1호
    • /
    • pp.44-53
    • /
    • 1999
  • The resistant strains due to the extended-spectrum $\beta$-lactamase (ESBL) were susceptible to cefatrizine combined with clavulanic acid. The purpose of this study was to evaluate the in vitro and in vivo antibacterial activities of cefatrizine/clavulanic acid (CTRZ/CV) combination at a ratio of 2 : 1 in comparison with cefaclor (CCLO), cefuroxime (CRXM), cefuroxime axetil (CRXMA) and amoxicillin/clavulanic acid (AMXCCV). CTRZ/CV showed good activity against laboratory strains of gram-positive and gram-negative bacteria and exhibited excellent antibacterial activity against $\beta$-lactamase-producing strains. The bactericidal activity of CTRZ/CV was superior to that of CCLO and CRXM, and almost equal to that of AMXCCV against the $\beta$-lactamase-producing strains. The in vitro results were substantiated. by in vivo mouse experimental infection studies with $\beta$-lactamase-producing and non-producing strains. In mixed experimental infection due to $\beta$-lactamase-producing and non-producing strains, the therapeutic efficacy of CTRZ/CV was superior to that of CTRZ, CCLO, CRXMA and AMXCCV. In respiratory tract infection in mice due to Klebsiella pneumoniae EB4O, CTRZ/CV was more erective than CCLO, CRXMA and AMXCCV and also more efficacious than CCLO, CRXMA and AMXCCV in urinary tract infection in mice due to Escherichia coli EB13. These results indicate that CTRZ/CV is a useful drug for the treatment of infection caused by $\beta$-1actamase-producing strains including ESBL-producing strains.

  • PDF