DOI QR코드

DOI QR Code

Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

  • Gan, Lin-Ling (Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University) ;
  • Fang, Bo (Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University) ;
  • Zhou, Cheng-He (Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University)
  • Received : 2010.05.17
  • Accepted : 2010.10.11
  • Published : 2010.12.20

Abstract

A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1-yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to $25\;{\mu}g/mL$, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)-1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: $25\;{\mu}g/mL$, $50\;{\mu}g/mL$ and $100\;{\mu}g/mL$ in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole.

Keywords

References

  1. Sojakova, M.; Liptajova, D.; Borovsky, M. Mycopathologia 2004, 157, 163-169. https://doi.org/10.1023/B:MYCO.0000020594.35357.b0
  2. Lyman, C. A.; Walsh, T. J. Drugs 1992, 44, 9-35. https://doi.org/10.2165/00003495-199244010-00002
  3. Phillips O. A.; Udo E. E.; Samuel S. M. Eur. J. Med. Chem. 2008, 43, 1095-1104. https://doi.org/10.1016/j.ejmech.2007.07.006
  4. Foye, W. O.; Lemke, T. L.; William, D. A. Principles of Medicinal Chemistry, 4th ed.; Williams and Wilkins: London, 1995.
  5. Gan, L. L.; Lu, Y. H.; Zhou, C. H. Chin. J. Biochem. Pharma. 2009, 30, 127-131.
  6. Cai, J. L.; Lu, Y. H.; Gan, L. L.; Zhou, C. H. Chin. J. Antibiotics. 2009, 34, 454-462 (in Chinese)
  7. Gan, L. L.; Cai, J. L.; Zhou, C. H. Chin. Pharma. J. 2009, 44, 1361-1368 (in Chinese).
  8. Foroumadi, A.; Emami, S.; Mansouri, S.; Javidnia, A.; Saeid-Adeli, N.; Shirazi, F. H.; Shafiee, A. Eur. J. Med. Chem. 2007, 42, 985- 992. https://doi.org/10.1016/j.ejmech.2006.12.034
  9. Lohray, B. B.; Lohray, V. B.; Srivastava, B. K.; Gupta, S.; Solanki, M.; Pandya, P.; Kapadnis, P. Bioorg. Med. Chem. Lett. 2006, 16, 1557-1561. https://doi.org/10.1016/j.bmcl.2005.12.025
  10. Foroumadi, A.; Ghodsi, S.; Emami, S.; Najjari, S.; Samadi, N.; Faramarzi, M. A.; Beikmohammadi, L.; Shirazi, F. H.; Shafiee, A. Bioorg. Med. Chem. Lett. 2006, 16, 3499-3503. https://doi.org/10.1016/j.bmcl.2006.03.103
  11. Watkins, W. J.; Chong, L.; Cho, A.; Hilgenkamp, R.; Ludwikow, M.; Garizi, N.; Iqbal, N.; Barnard, J.; Singh, R.; Madsen, D.; Lolans, K.; Lomovskaya, O.; Oza, U.; Kumaraswamy, P.; Blecken, A.; Bai, S.; Loury, D. J.; Griffitha, D. C.; Dudley, M. N. Bioorg. Med. Chem. Lett. 2007, 17, 2802-2806. https://doi.org/10.1016/j.bmcl.2007.02.047
  12. Upadhayaya, R. S.; Sinha, N.; Jain, S.; Kishore, N.; Chandra, R.; Arora, S. K. Bioorg. Med. Chem. 2004, 12, 2225-2238. https://doi.org/10.1016/j.bmc.2004.02.014
  13. Rokosz, L. L.; Huang, C. Y.; Reader, J. C.; Stauffer, T. M.; Chelsky, D.; Sigal, N. H.; Ganguly, A. K.; Baldwin, J. J. Bioorg. Med. Chem. Lett. 2005, 15, 5537-5543. https://doi.org/10.1016/j.bmcl.2005.08.074
  14. Chen, J. J.; Lu, M.; Jing, Y. K.; Dong, J. H. Bioorg. Med. Chem. 2006, 14, 6539-6547. https://doi.org/10.1016/j.bmc.2006.06.013
  15. Shami, P. J.; Saavedra, J. E.; Bonifant, C. L.; Chu, J. X.; Udupi, V.; Malaviya, S.; Carr, B. I.; Kar, S.; Wang, M. F.; Jia, L.; Ji, X. H.; Keefer, L. K. J. Med. Chem. 2006, 49, 4356-4366. https://doi.org/10.1021/jm060022h
  16. Mayence, A.; Eynde, J. J. V.; LeCour, L.; Jr Walker, L. A.; Tekwani, B. L.; Huang, T. L. Eur. J. Med. Chem. 2004, 39, 547-553. https://doi.org/10.1016/j.ejmech.2004.01.009
  17. Cunico, W.; Gomes, C. R. B.; Moreth, M.; Manhanini, D. P.; Figueiredo, I. H.; Penido, C.; Henriques, M. G. M. O.; Varotti, F. P.; Krettli, A. U. Eur. J. Med. Chem. 2009, 44, 1363-1368. https://doi.org/10.1016/j.ejmech.2008.04.009
  18. Smits, R. A.; Lim, H. D.; Hanzer, A.; Zuiderveld, O. P.; Guaita, E.; Adami, M.; Coruzzi, G.; Leurs, R.; Esch, I. J. P. J. Med. Chem. 2008, 51, 2457-2467. https://doi.org/10.1021/jm7014217
  19. Penjisevic, J.; sukalovic, V.; Andric, D.; Kostic-Rajacic, S.; soskic, V.; Roglic, G. Arch. Pharm. Chem. Life Sci. 2007, 340, 456-465. https://doi.org/10.1002/ardp.200700062
  20. Becker, O. M.; Dhanoa, D. S.; Marantz, Y.; Chen, D.; Shacham, S.; Cheruku, S.; Heifetz, A.; Mohanty, P.; Fichman, M.; Sharadendu, A.; Nudelman, R.; Kauffman, M.; Noiman, S. J. Med. Chem. 2006, 49, 3116-3135. https://doi.org/10.1021/jm0508641
  21. Bean, D. C.; Wareham, D. W. J. Antimicrobl. Chemother. 2009, 63, 349-352.
  22. Coban, A. Y.; Bayram, Z.; Sezgin, F. M.; Durupinar, B. Mikrobiyoloji. Bulteni. 2009, 43, 457-461.
  23. Chaudhary, P.; Kumar, R.; Verma, A. K.; Singh, D.; Yadav, V.; Chhillar, A. K.; Sharmab, G. L.; Chandraa, R. Bioorg. Med. Chem. 2006, 14, 1819-1826. https://doi.org/10.1016/j.bmc.2005.10.032
  24. Farzaliev, V. M.; Abbasova, M. T.; Ashurova, A. A.; Babaeva, G. B.; Ladokhina, N. P.; Kerimova, Y. M. Russian J. Appl. Chem. 2009, 82, 928-930. https://doi.org/10.1134/S107042720905036X
  25. Weiderhold, K. N.; Randall-Hlubek, D. A.; Polin, L. A.; Hamel, E.; Mooberry, S. L. Int. J. Cancer 2006, 118, 1032-1040. https://doi.org/10.1002/ijc.21424
  26. Senthilkumar, P.; Dinakaran, M.; Banerjee, D.; Devakaram, R. V.; Yogeeswari, P.; China, A.; Nagaraja, V.; Sriram, D. Bioorg. Med. Chem. 2008, 16, 2558-2569. https://doi.org/10.1016/j.bmc.2007.11.050
  27. Narendra Sharath Chandra, J. N.; Sadashiva, C. T.; Kavitha, C. V.; Rangappa, K. S. Bioorg. Med. Chem. 2006, 14, 6621-6627. https://doi.org/10.1016/j.bmc.2006.05.064
  28. Ananda Kumar, C. S.; Benaka Prasad, S. B.; Vinaya, K.; Chandrappa, S.; Thimmegowda, N. R.; Sunil Kumar, Y. C.; Sanjay, S.; Rangappa, K. S. Eur. J. Med. Chem. 2009, 44, 1223-1229. https://doi.org/10.1016/j.ejmech.2008.09.025
  29. Huang, S. L.; Lin, R. H.; Yu, Y.; Lu, Y. H.; Connolly, P. J.; Chiu, G.; Li, S. J.; Emanuel, S. L.; Middleton, S. A. Bioorg. Med. Chem. Lett. 2007, 17, 1243-1245. https://doi.org/10.1016/j.bmcl.2006.12.031
  30. Bellina, F.; Cauteruccio S.; Monti, S.; Rossi, R. Bioorg. Med. Chem. Lett. 2006, 16, 5757-5762. https://doi.org/10.1016/j.bmcl.2006.08.087
  31. Wu, J.; Mi, J. L.; Zhou, C. H. Chin. Pharm. J. 2007, 46, 404-409 (in Chinese).
  32. Guven, O. O.; Erdogan, T.; Göker, H.; Yıldız, S. Bioorg. Med. Chem. Lett. 2007, 17, 2233-2236. https://doi.org/10.1016/j.bmcl.2007.01.061
  33. Mi, J. L.; Wu, J.; Zhou, C. H. West China J. Pharm. Sci. 2008, 23, 84-86 (in Chinese).
  34. Zhou, C. H.; Hassner, A. Carbohydrates Res. 2001, 333, 313-326. https://doi.org/10.1016/S0008-6215(01)00154-9
  35. Cai, J. L.; Li, S.; Zhou, C. H.; Gan, L. L.; Wu, J. Chin. J. New Drugs 2009, 18, 598-608 (in Chinese).
  36. Luo, Y.; Lu, Y. H.; Gan, L. L.; Zhou, C. H.; Wu, J.; Geng, R. X.; Zhang, Y. Y. Arch. Pharm. Chem. Life Sci. 2009, 342, 386-393. https://doi.org/10.1002/ardp.200800221
  37. Zhang, F. F.; Gan ,L. L.; Zhou, C. H. Bioorg. Med. Chem. Lett. 2010, 20, 1881-1884. https://doi.org/10.1016/j.bmcl.2010.01.159
  38. Ren, F. K.; He, X. Y.; Deng, F.; Li, B. H.; Shin, D. S.; Li, Z. B. Bull. Korean Chem. Soc. 2009, 30, 687-690. https://doi.org/10.5012/bkcs.2009.30.3.687
  39. Hamied, Y. K.; Kulkarni, V. M. WO 2001079188, 2001.
  40. Press, J. B.; Hajos, Z. EP 0331510, 1989
  41. Press, J. B.; Falotico, R.; Hajos, Z. G.; Sawyers, R. A.; Kanojia, R. M.; Williams, L.; Haertlein, B.; Kauffman, J. A.; Lakas-Weiss, C.; Salata, J. J. J. Med. Chem. 1992, 35, 4509-4515. https://doi.org/10.1021/jm00102a001
  42. Wright, H. B.; Martin, D. L. J. Med. Chem. 1968, 11, 390-391. https://doi.org/10.1021/jm00308a056
  43. McCalmont, W. F.; Heady, T. N.; Patterson, J. R.; Lindenmuth, M. A.; Haverstick, D. M.; Gray, L. S.; Macdonald, T. L. Bioorg. Med. Chem. Lett. 2004, 14, 3691-3695. https://doi.org/10.1016/j.bmcl.2004.05.011
  44. Chai, X. Y.; Zhang, J.; Hu, H. G.; Yu, S. C.; Sun, Q. Y.; Dan, Z. G.; Jiang, Y. Y.; Wu, Q. Y. Eur. J. Med. Chem. 2009, 44, 1913-1920. https://doi.org/10.1016/j.ejmech.2008.11.007

Cited by

  1. ChemInform Abstract: Synthesis of Azole-Containing Piperazine Derivatives and Evaluation of Their Antibacterial, Antifungal and Cytotoxic Activities. vol.42, pp.15, 2011, https://doi.org/10.1002/chin.201115170
  2. Synthesis and biological activities of thio-triazole derivatives as novel potential antibacterial and antifungal agents vol.55, pp.10, 2012, https://doi.org/10.1007/s11426-012-4602-1
  3. 2-Chloro-1-[4-(2,4-difluorobenzyl)piperazin-1-yl]ethanone vol.68, pp.1, 2012, https://doi.org/10.1107/S1600536811052597
  4. Synthesis and anticancer activity evaluation of N-[4-(2-methylthiazol-4-yl)phenyl]acetamide derivatives containing (benz)azole moiety vol.29, pp.2, 2014, https://doi.org/10.3109/14756366.2013.763253
  5. Synthesis and cytotoxicity studies of novel benzhydrylpiperazine carboxamide and thioamide derivatives vol.29, pp.2, 2014, https://doi.org/10.3109/14756366.2013.765416
  6. O-catalyzed synthesis of multi-substituted 1,2,4-triazoles from amidines with nitriles via a N–N/C–N coupling vol.5, pp.96, 2015, https://doi.org/10.1039/C5RA15919A
  7. Design, synthesis, and antibacterial evaluation of novel azolylthioether quinolones as MRSA DNA intercalators vol.6, pp.7, 2015, https://doi.org/10.1039/C5MD00186B
  8. The Structure–Antimicrobial Activity Relationships of a Promising Class of the Compounds Containing the N-Arylpiperazine Scaffold vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101274
  9. ) dipyrrinato complexes: DNA, protein binding and anti-cancer activity against the ACHN cancer cell line vol.45, pp.16, 2016, https://doi.org/10.1039/C6DT00446F
  10. Synthesis of novel fluconazoliums and their evaluation for antibacterial and antifungal activities vol.46, pp.9, 2010, https://doi.org/10.1016/j.ejmech.2011.07.010
  11. Synthesis and Characterization of Thiophene‐derived Amido Bis‐nitrogen Mustard and Its Antimicrobial and Anticancer Activities vol.30, pp.8, 2010, https://doi.org/10.1002/cjoc.201100668
  12. Comprehensive Review in Current Developments of Imidazole‐Based Medicinal Chemistry vol.34, pp.2, 2010, https://doi.org/10.1002/med.21290
  13. Synthesis and Cytotoxicity Studies on Novel Piperazinylacetamides vol.16, pp.1, 2010, https://doi.org/10.2174/1570180815666180501124009
  14. Novel Tri-substituted Thiazoles Bearing Piperazine Ring: Synthesis and Evaluation of their Anticancer Activity vol.16, pp.5, 2019, https://doi.org/10.2174/1570180815666180731122118
  15. A promising anticancer drug: a photosensitizer based on the porphyrin skeleton vol.11, pp.4, 2020, https://doi.org/10.1039/c9md00558g