• Title/Summary/Keyword: Antibacterial composite

Search Result 51, Processing Time 0.026 seconds

Elution of amikacin and vancomycin from a calcium sulfate/chitosan bone scaffold

  • Doty, Heather A.;Courtney, Harry S.;Jennings, Jessica A.;Haggard, Warren O.;Bumgardner, Joel D.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.159-172
    • /
    • 2015
  • Treatment of polymicrobial infected musculoskeletal defects continues to be a challenge in orthopaedics. This research investigated single and dual-delivery of two antibiotics, vancomycin and amikacin, targeting different classes of microorganism from a biodegradable calcium sulfate-chitosan-nHA microsphere composite scaffold. The addition of chitosan-nHA was included to provide additional structure for cellular attachment and as a secondary drug-loading device. All scaffolds exhibited an initial burst of antibiotics, but groups containing chitosan reduced the burst for amikacin at 1hr by 50%, and vancomycin by 14-25% over the first 2 days. Extended elution was present in groups containing chitosan; amikacin was above MIC ($2-4{\mu}g/mL$, Pseudomonas aeruginosa) for 7-42 days and vancomycin was above MIC ($0.5-1{\mu}g/mL$ Staphylococcus aureus) for 42 days. The antibiotic activity of the eluates was tested against S. aureus and P. aeruginosa. The elution from the dual-loaded scaffold was most effective against S. aureus (bacteriostatic 34 days and bactericidal 27 days), compared to vancomycin-loaded scaffolds (bacteriostatic and bactericidal 14 days). The dual- and amikacin-loaded scaffolds were effective against P. aeruginosa, but eluates exhibited very short antibacterial properties; only 24 hours bacteriostatic and 1-5 hours bactericidal activity. For all groups, vancomycin recovery was near 100% whereas the amikacin recovery was 41%. In conclusion, in the presence of chitosan-nHA microspheres, the dual-antibiotic loaded scaffold was able to sustain an extended vancomycin elution longer than individually loaded scaffolds. The composite scaffold shows promise as a dual-drug delivery system for infected orthopaedic wounds and overcomes some deficits of other dual-delivery systems by extending the antibiotic release.

Preparation of PVdF/GO Composite Nanofibrous Flat Membrane and its Permeation Characteristics in Activated Sludge (PVdF/GO 복합 나노섬유 평막의 제조 및 활성슬러지 내 투과특성)

  • Won, In Hye;Jang, Wongi;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In this study the nanofiber was prepared by electrospinning method with polyvinylidene fluoride (PVdF) and a completely dispersed solution of graphene oxide (GO) in the mixed solvent of dimethylformamide (DMF) and acetone. The $0.4{\mu}m$ pore size microfiltration flat membrane was made by increasing layers of the PVdF/GO composite nanofiber. Also, transmembrane pressure (TMP) was measured in order to evaluate fouling of the PVdF/GO composite membrane which was introduced GO reducing biological fouling with the intrinsic antibacterial characteristics. The permeate experiments were carried out simultaneously for the PVdF/GO and commercialized CPVC (chlorinated polyvinyl chloride) flat membranes with $0.01m^2$ effective area in the activated sludge solution of MLSS 4,500 mg/L. TMP of PVdF/GO membrane decreased up to 79% lower than that of CPVC for $10L/m^2{\cdot}h$ permeate flux without air supply. Also, for the case of run/stop operational mode, TMP of PVdF/GO membrane decreased up to 69% lower than that of CPVC for $10L/m^2{\cdot}h$.

Characterization and Photonic Effect of Novel Ag-CNT/TiO2 Composites and their Bactericidal Activities

  • Zhang, Feng-Jun;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1981-1987
    • /
    • 2010
  • A novel composite (Ag-CNT/$TiO_2$) of silver treated carbon nanotubes (Ag-CNT) and $TiO_2$ was synthesized via wet chemistry followed by a heat treatment. The dispersion and structure of the silver in the synthesized composites determined by X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy(TEM). XRD patterns of the composites showed that the composites contained a mixing anatase and rutile phase. The EDX spectra showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the CNT network, and silver particles were virtually fixed on the surface of the tube. The photocatalysis degraded behaviors of the Ag-CNT/$TiO_2$ composites of the methylene blue, which increased with an increase of the silver component. The Ag-CNT/$TiO_2$ composites have excellent antibacterial activities against Escherichia coli (E. Coli), Pseudomonas aeruginosa (P. Aeru) and Bacillus subtilis (B. Sub) under visible light.

Synthesis of Ag-Hydroxyapatite Antibiotic Material by Coprecipitation Method (공침법을 이용한 은-수산화아파타이트 항균소재의 제조)

  • Jang, Kwang-Kyu;Shin, Hun Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.473-478
    • /
    • 2007
  • Antibiotic composite was synthesized by coprecipitation of silver nitrate into hydroxyapatite. Adsorbed amount of silver ion was examined by the variation of concentration of silver nitrate, temperature, pressure and curing time. Optimum condition for silver-hydroxyapatite adsorption could be achieved. Physical and chemical characteristic properties of synthesized silver-hydroxyapatite were tested by ICP-MS, SEM-EDAX, DSC and XRD. Antibiotic properties for gram positive staphylococcus aureus (ATCC 6538) and gram negative escherichia coli (ATCC 25922) were tested by shake flake method.

Development of PCM Color Coated Steel Sheets with Excellent Antiviral and Antimicrobial Properties

  • Du-Hwan Jo;Seongil Kim;Jinkyun Roh;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • Recently, due to the rapid spread and continuation of COVID-19, customer demand for health and hygiene has increased, requiring the development of new products that express antiviral and antibacterial properties. In particular, viruses are much smaller in size than bacteria and have a fast propagation speed, making it difficult to kill. POSCO has developed eco-friendly PCM color coated steel sheets with excellent antiviral properties by introducing inorganic composite materials to the color coating layer on the surface of Zn-Al-Mg alloy plated steels. The virus is not only destroyed by adsorption of metal ions released from the surface of the coating film, but is also further promoted by the generation of reactive oxygen species by the reaction of metal ions and moisture. As a result of evaluating the developed products under the International Standard Evaluation Act, the microbicidal activity was 99.9% for viruses, and 99.99% for bacteria and 0% fungi. In particular, excellent results were also shown in the durability evaluation for life cycle of the product. The developed product was applied as a wall of school classrooms and toilets and ducts for building air conditioning, resulting in excellent results. Developed products are being applied for construction and home appliances to practice POSCO's corporate citizenship.

Biological Activities or oat soluble $\beta$-glucans (귀리 수용성 $\beta$-glucan의 생물활성)

  • 강태수;정헌상;박희정;이명렬;공영준;정익수
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.547-553
    • /
    • 2003
  • To develop the health and functional food material from oats, this study was conducted to determine the biologiral activities(antibacterial, antioxidative and mtltmor effects) of oat bran's soluble ${\beta}$-glucans obtained from oat bran concentrate(OBC) by central composite experimental design. The antibacterial effect of oat's ${\beta}$-glucans in the concentration of 250, 500$\mu\textrm{g}$/disc was not detected by paper disc method, and no antioxidative effect of them in the concentration of 5% by electron donating ability. The growth inhibition on tumor cell lines of oat's soluble ${\beta}$ -glucans was significantly higher in the experimental fraction of No. 7(temperature 45$^{\circ}C$, ethanol 15%, pH 6) than the other fractions(p<0.05). The maximal values of growth inhibitions on AGS, Hep3B and A549 cell lines in the cancentration of 1mg/ml are 59%, 58% and 54% respectively. In addition, the inhibition effect on three tumor cell lines of No. 1(temperature 5$^{\circ}C$, ethanol 5%, pH 6) was relatively high. From the results of response surface methodology, as the values of independent variables changed, they influenced the growth inhibition effect on this cell lines. With this on work further research is required to clarify antitumor effects.

Synthesis and Antifungal Property of Porous Al2O3 with Dispersions of Cu Nanoparticles (Cu 입자가 분산된 Al2O3 다공체의 제조 및 항균특성)

  • Yoo, Ho-Suk;Kim, Min-Sung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • In order to fabricate the porous $Al_2O_3$ with dispersion of nano-sized Cu particles, freeze-drying of camphene/$Al_2O_3$ slurry and solution chemistry process using Cu-nitrate are introduced. Camphene slurries with 10 vol% $Al_2O_3$ was frozen at $-25^{\circ}C$. Pores were generated by sublimation of the camphene during drying in air. The sintered samples at 1400 and $1500^{\circ}C$ showed the same size of large pores which were aligned parallel to the sublimable vehicles growth direction. However, the size of fine pores in the internal walls of large pores decreased with increase in sintering temperature. It was shown that Cu particles with the size of 100 nm were homogeneously dispersed on the surfaces of the large pores. Antibacterial test using fungus revealed that the porous $Al_2O_3$/1 vol% Cu composite showed antifungal property due to the dispersion of Cu particles. The results are suggested that the porous composites with required pore characteristics and functional property can be fabricated by freeze-drying process and addition of functional nano particles by chemical method.

Modern Possibilities and Prospects of Nanotechnology in Dentistry

  • Sergiy, Chertov;Valery, Kaminskyy;Olha, Tatarina;Oleksii, Mandych;Andrii, Oliinyk
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.97-106
    • /
    • 2022
  • Objective. Nanotechnology is spreading among all areas of life, from everyday devices to medicine. The concept of nanotechnology argues that not only can new physical and chemical properties of materials be discovered, but also the new potential of nanostructures when reduced to the nanoscale. The growing interest in the application of nanomaterials in dentistry contributes to the proliferation of the range of nanomaterials used by specialists. The purpose of this review of information sources was to analyze the prospects for the use of nanomaterials in dentistry. Methods. We used the bibliographic semantic method of research, for which we analyzed electronic databases of primary literature sources Scopus, Web of Science, Research Gate, PubMed, MDPI, and MedLine. English-language scientific articles published after 2017 were taken into consideration. Results. According to the results of a search study among modern information primary sources, nanotechnology improves the preventive properties of oral care products, improves the structural-mechanical and aesthetic properties of composite mixtures for dentistry, overcomes the problems of the clinical application of dental implants. Despite the prospects of nanotechnology applications in medicine in general and dentistry in particular, the existing economic and technological problems require a thorough solution for further implementation of nanostructures. Scientific novelty. For the first time, the analysis of modern trends in the application of nanotechnology in dentistry is carried out and the peculiarities of materials are highlighted, the problems and prospects of nanostructures implementation in modern dental implantology are given, physical, chemical, mechanical, and antibacterial properties of nanomaterials are evaluated. The effect of nanomaterials on the microbial adhesion of the tooth or implant surface is described. Practical significance. The presented publication can become a scientific basis for the solution of urgent problems hindering the introduction of nanotechnology into dental practice. Conclusions. Thus, the use of nanostructures opens up great opportunities for the treatment of a wide range of diseases, not only of dental nature but also in medicine in general.

Photocatalytic Membrane for Contaminants Degradation: A Review (오염물질 분해를 위한 광촉매 분리막: 총설)

  • Kahkahni, Rabea;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Growing industrialization leads to severe water pollution. Organic effluents from pharmaceuticals and textile industries released in wastewater adversely affect the environment and human health. Presence of antibiotics used for antibacterial treatment in wastewater leads to the growth of drug resistance bacteria, which is very harmful for human being. Various small organic molecules are used for the preparation of organic dye molecules in the textile industries. These molecules hardly degrade, which is present in the wastewater effluents from printing and dyeing industries. In order to address these problems, photoactive catalyst is embedded in the membrane and wastewater are passed through it. Through this process, organic molecules are photodegraded and at the same time, the degraded compounds are separated by the membrane. Titanium dioxide (TiO2) is a semiconductor which behave as excellent photocatalyst. Photocatalytic ability is enhanced by the making its composite with other transition metal oxide and incorporated into polymeric membrane. In this review, the degradation of dye and drug molecules by photocatalytic membrane are discussed.

Preparation and Characterization of UV-cured Polyurethane Acrylate/ZnO Nanocomposite Films (자외선 경화형 폴리우레탄 아크릴레이트/ZnO 나노콤포지트 필름의 제조 및 특성 분석)

  • Jeon, Gwonyoung;Park, Su-il;Seo, Jongchul;Seo, Kwangwon;Han, Haksoo;You, Young Chul
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.610-616
    • /
    • 2011
  • A series of polyurethane acrylate/ZnO (PUA/ZnO) nanocomposite films with different ZnO contents were successfully prepared via a UV-curing system. The synthesis and physical properties including morphological structure, thermal properties, barrier properties and optical properties, and antimicrobial properties were investigated as a function of ZnO concentration. FTIR and SEM results showed that these PUA/ZnO nanocomposite films did not have a strong interaction between PUA and ZnO, which may lead to no increase in thermal stability. By incorporating ZnO nanoparticles, the UV blocking and antibacterial properties increased as the content of ZnO increased. Specially, the oxygen permeability in composite films changed from $2005cc/m^2/day$ to $150cc/m^2/day$ by adding the ZnO nanoparticle, which indicates that the PUA/ZnO nanocomposite films can be applied as good barrier packaging materials. Physical properties of the UV-cured PUA/ZnO nanocomposite film are strongly dependent upon the dispersion state of ZnO nanoparticles and their morphology in the films.