• Title/Summary/Keyword: Anti-wear

Search Result 142, Processing Time 0.029 seconds

Tribological Characteristics with Concentration ZnDTP Additives in Automotive Engine (자동차 엔진의 ZnDTP 첨가제 농도에 따른 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.697-702
    • /
    • 2007
  • The lubricational characteristics about friction and wear has an important effect on the material quality of surface. Therefore, in the case of automobile engine oil which is used under severe running condition, or therefore, the seizure and anti-scuffing is very important. We have studied the lubricational characteristics of auto engine oil with additives using Falex wear test machine. We have obtained the studied result is as fellows. In order to more improved the surface roughness characteristics adding the P(phosphate) as additives is excellent at a low temperature. Adding the ZnDTP and Ca-phenate is excellent on the anti-wear and extreme pressure properties at the high load. Moreover, when the ZnDTP and P are added, the temperature properties is excellent because the stability is maintained in a high temperature.

  • PDF

Development of Composite Fly Ash Pipe (비회 운송용 유리섬유 복합관 개발)

  • Jeong, Gyu-Sang;Won, Sam-Yong;Moon, Jin-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.33-36
    • /
    • 2007
  • The majority of fly ash pipes in thermal power stations use steel pipes. This makes frequent replacement inevitable due to severe abrasion near the hot and curved section of pipes. Recently, there have been efforts to prevent this abrasion with lining techniques using ceramic or basalt on the inner wall of the pipe. This study uses composite and anti-wear material to maximize the anti-abrasion effects on the hot section of the pipe. The thickness of the abrasion layer was determined by the abrasion ratio of material found through the experiment; the thickness of the reinforcement layer was determined by micromechanics. Experiments were conducted on epoxy resins to test for heat and abrasion. Anti-abrasion test using particle impingement was intended to recreate realistic conditions when abrasion occurs within the hot section of an actual pipe. This study analyzes the abrasion ratio obtained from both the specimen experiment and from on-site measurement and provides evidence that a combination of composites and anti-wear agent can be used to create a fly ash pipe that is lower in costs and higher in quality than what is used currently.

  • PDF

A Study on Wear Characteristics of High strength aluminum alloys by Surface Hardening (표면경화에 의한 고강도 알루미늄 합금의 마모 특성에 관한 연구)

  • Lee, Nam-Soo;Huh, Sun-Chul;Lee, Kwang-Young;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1601-1606
    • /
    • 2007
  • In order for high strength aluminum alloys to be used in transportation systems and the aerospace industry, excellent mechanical and physical properties are required. In particular, excellent anti-abrasion property is indispensable for parts that require driving force. In general, surface treatment technologies such as high frequency heat treatment, gas solid carburizing, surface rolling, shot peening are used as ways of improving anti-abrasion property. Among various surface treatment technologies, this research chose shot peening processing for Al7075-T6, which is well known as representative high-strength alloy steel. Wear characteristics were compared and analyzed after shot peening processing with shot ball velocities of 40m/s and 70m/s in order to investigate the effects of shot peening processing on wear characteristics.

  • PDF

A Study on the Tribological Characteristics of Surface Modification (The 1st) (표면개질의 트라이볼로지 특성에 관한 연구(제1보))

  • Oh, Seong-Mo;Chae, Wang-Seok;Lee, Bong-Goo;Kim, Dong-Hyun;,
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.145-150
    • /
    • 1999
  • We have studied on the tribological characteristics of surface modification by Arc Ion Implantation(AIP) coating method. Coating materials were deposited by the Titanium carbide(TiC) and Titanium nitride(TiN). An experimental process was established to determine the tribological characteristics of friction and wear behaviour with the variation of applied load, temperature and the time by the Falex friction and wear test machine. The results, It can be improved that when the surface modification of hard coatings(TiC, TiN) was deposited steel, the tribological characteristics become better. It is argued that improved because of excellence of the anti-wear, the extreme pressure properties and the heat stability.

  • PDF

Methodology for Wear Prediction Considering the Gap between Tube and Support/Anti-vibration-bar in the Steam Generator (증기발생기 세관과 지지대 간극을 고려한 마모량 예측 방법론)

  • Lee, Yong-Son;Park, Chi-Yong;Kim, Tae-Soon;Boo, Myung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.84-89
    • /
    • 2004
  • When the tube contacted to support, anti-vibration bar of the steam generator in nuclear power plant, the contact area is worn out by their relative displacement and contact force. Connors and Au-Yang found the relation between tube worn displacement and volume, or normal work rate at given gap size. The present analysis is obtained the relation between tube worn displacement and normal work rate at various gap size modifying Au-Yang's result. The results are compared with Connors and Yettisir and Pettigrew's results. The comparison shows that Yettisir and Pettigrew result is fairly good agreement with Connors and present results with gap clearance, 0.015in.

  • PDF

Inflammability Characteristics and Wear Comfort Property of Modacrylic Composite Yarn and Knitted Fabrics (난연 모다크릴 복합 방적사 니트소재의 방염성과 착용쾌적특성)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.397-410
    • /
    • 2018
  • This study investigated the flame retardant, anti-static property and wear comfort of knitted fabrics made of two kinds of composite yarns comprised of modacryl, antistatic PET, cotton and excel(R) fibers. A Low Oxygen Index (LOI) above 28 was observed in the modacryl knitted fabric specimens. The flame retardant was superior at the excel(R) fiber (including modacryl knitted fabric) than the one including cotton fiber. Anti-static properties of the modacryl knitted fabrics imbedded by 3wt% of antistatic PET fibers were observed by rubbing with wool fabric attached to the measuring apparatus, which showed a better anti-static property than the excel(R) fiber (including modacryl knitted fabric). Wear comfort indicated that quick perspiration absorption and the fast dry property of excel(R) (including modacryl knitted fabric) was better than one that included cotton fiber. Warmth keepability and breathability of the knitted fabrics indicated good results in the excel(R) (including cotton and the modacryl knitted fabrics). However, the tactile hand property of cotton fiber (including modacryl knitted fabric) was better than excel(R) fiber due to high extensibility and compressibility, and low bending and shear rigidity of the cotton fiber (including modacryl knitted fabrics).

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

EP AND WEAR OF SOME KOREA GREASES (國産 GREASE의 極壓性과 耐摩耗性)

  • Moon, Tak Jin;Song, Heung Won;Kwon, Oh Kwan
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.179-184
    • /
    • 1970
  • Four-ball EP and wear testers were used to study the effects of thickeners and additives on the EP and wear properties of some Korean greases. The EP property improved in the order of Li < Al < Ca, and the concentration of thickener did not affect the property when the same base oil and additives were used. The anti-wear property was improved in general when the additives were used.

  • PDF

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Lee, Jeong-Kun;Park, Chi-Yong;Kim, Tae-Ryong;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1684-1689
    • /
    • 2007
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progression model for impact-fretting wear has been investigated and proposed. The proposed wear progression model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

  • PDF

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Park, Chi-Yong;Lee, Jeong-Kun;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.