DOI QR코드

DOI QR Code

Inflammability Characteristics and Wear Comfort Property of Modacrylic Composite Yarn and Knitted Fabrics

난연 모다크릴 복합 방적사 니트소재의 방염성과 착용쾌적특성

  • Received : 2017.08.23
  • Accepted : 2018.04.18
  • Published : 2018.06.30

Abstract

This study investigated the flame retardant, anti-static property and wear comfort of knitted fabrics made of two kinds of composite yarns comprised of modacryl, antistatic PET, cotton and excel(R) fibers. A Low Oxygen Index (LOI) above 28 was observed in the modacryl knitted fabric specimens. The flame retardant was superior at the excel(R) fiber (including modacryl knitted fabric) than the one including cotton fiber. Anti-static properties of the modacryl knitted fabrics imbedded by 3wt% of antistatic PET fibers were observed by rubbing with wool fabric attached to the measuring apparatus, which showed a better anti-static property than the excel(R) fiber (including modacryl knitted fabric). Wear comfort indicated that quick perspiration absorption and the fast dry property of excel(R) (including modacryl knitted fabric) was better than one that included cotton fiber. Warmth keepability and breathability of the knitted fabrics indicated good results in the excel(R) (including cotton and the modacryl knitted fabrics). However, the tactile hand property of cotton fiber (including modacryl knitted fabric) was better than excel(R) fiber due to high extensibility and compressibility, and low bending and shear rigidity of the cotton fiber (including modacryl knitted fabrics).

Keywords

References

  1. AATCC. (2012). AATCC Test Method 195-2011: Liquid moisture management properties of textile fabrics. AATCC Technical Manual, 366-370.
  2. Chen, S., Zheng, Q. K., Ye, G. D., & Zheng, G. K. (2006). Fire-retardant properties of the viscose rayon containing alkoxycyclotriphosphazene. Journal of Applied Polymer Science, 102(1), 698-702. doi:10.1002/app.24217
  3. Hribernik, S., Smole, M. S., Kleinschek, K. S., Bele, M., Jamnik, J., & Gaberscek, M. (2007). Flame retardant activity of $SiO_2$-coated regenerated cellulose fibres. Polymer Degradation and Stability, 92(11), 1957-1965. doi:10.1016/j.polymdegradstab.2007.08.010
  4. Japanese Standards Association. (2012, March 21). JSA - JIS L 1099 TESTING METHODS FOR WATER VAPOUR PERMEABILITY OF TEXTILES. IEEE. Retrieved April 10, 2017, https://standards.globalspec.com/std/1592586/jsa-jis-l-1099
  5. Kim, C. J., & Piromthamsiri, K. (1984). Sensory and physical hand properties of inherently flame-retardant sleepwear fabrics 1. Textile Research Journal, 54(1), 61-68. doi:10.1177/004051758405400113
  6. Kim, H. E., Yeon, S. M., Jeong, J. R., Lee, M. J., Chang, J. H., & You, H. C. (2006). Ergonomic evaluation of functional working-clothes - Focused on flame-proof clothing -. Journal of the Korean Society for Clothing Industry, 8(5), 597-603.
  7. Korean Agency for Technology and Standards. (2014, December 30). KS K ISO12945-1 Textiles-Determination of fabric propensity to surface fuzzing and to pilling-Part 1-Pilling box method. Korean Standards & Certifications. Retrieved April 10, 2017, from https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSKISO12945-1&tmprKsNo=KSKISO12945-1&reformNo=07
  8. Korean Agency for Technology and Standards. (2015, December 31). KS K 0555 Test method for electrostatic propensity of woven and knitted fabrics. Korean Standards & Certifications. Retrieved April 10, 2017, from https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSK0555&tmprKsNo=KSK0555&reformNo=06
  9. Korean Agency for Technology and Standards. (2016a, October 14). KS K 0350 Test method for bursting strength of cloth: Ball bursting method. Korean Standards & Certifications. Retrieved April 10, 2017, from https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSK0350&tmprKsNo=KSK0350&reformNo=15
  10. Korean Agency for Technology and Standards. (2016b, December 27). KS M ISO4589-2 Plastics - Determination of burning behavior by oxygen index - Part 2: Ambient-temperature test. Korean Standards & Certifications. Retrieved April 10, 2017, from https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSMISO4589-2&tmprKsNo=KSMISO4589-2&reformNo=03
  11. Korean Standards Association. (2012, December 28). KS K 0423 Test method for dimensional change of spun yarn. Korean Standards Service Network. Retrieved April 10, 2017, https://www.kssn.net/StdKS/KS_detail.asp?K1=K&K2=0423&K3=5
  12. Korean Standards Association. (2015a, December 31). KS K 0414 Test method for yarn number of cotton yarn. Korean Standards Service Network. Retrieved April 10, 2017, https://sps.kssn.net/StdKS/ks_detail.asp?k1=K&k2=0414&k3=7
  13. Korean Standards Association. (2015b, December 31). KS K ISO 16549 Textiles-Unevenness of textile strands-Capacitance method. Korean Standards Service Network. Retrieved April 10, 2017, https://www.kssn.net/stdks/ks_detail.asp?k1=K&k2=ISO%2016549&k3=3
  14. Korean Standards Association. (2016, December 28). KS K 0642 Test method for woven and knitted fabrics. Korean Standards Service Network. Retrieved April 10, 2017, https://www.kssn.net/StdKS/KS_detail.asp?K1=K&K2=0642&K3=2
  15. Lavate, S. S., Burji, M. C., & Patil, S. (2016). Study of yarn and fabric properties produced from modified viscose tencel, excel, modal, and their comparison against cotton. Textile Today, 9(10), 36-42.
  16. Ozkan, E. T., & Meric, B. (2015). Thermophysiological comfort properties of different knitted fabrics used in cycling clothes. Textile Research Journal, 85(1), 62-70. doi:10.1177/0040517514530033
  17. Richard-Campisi, L., Bourbigot, S., Le Bras, M., & Delobel, R. (1996). Thermal behaviour of cotton-modacrylic fibre blends: kinetic study using the invariant kinetic parameters method. Thermochimica Acta, 275(1), 37-49. doi:10.1016/0040-6031(95)02729-7
  18. Stejskal, J., Trchova, M., & Sapurina, I. (2005). Flame-retardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 98(6), 2347-2354. doi:10.1002/app.22144
  19. Tanaka, T., Terakado, O., & Hirasawa, M. (2016). Flame retardancy in fabric consisting of cellulosic fiber and modacrylic fiber containing fine-grained $MoO_3$ particles. Fire and Materials: An International Journal, 40(4), 612-621. doi:10.1002/fam.2314
  20. Tsai, J. S. (1992). Inflammability of modacrylic fibre. Journal of Materials Science Letters, 11(13), 953-955. doi:10.1007/BF00729105
  21. Tsai, J. S. (1993). The effect of flame-retardants on the properties of acrylic and modacrylic fibres. Journal of Materials Science, 28(5), 1161-1167. doi:10.1007/BF01191947
  22. Tsai, J. S., Ho, D. L., & Hung, S. C. (1991). Thermal characterization of acrylonitrile-vinylidene chloride copolymers for modacrylic fibres. Journal of Materials Science Letters, 10(15), 881-883. doi:10.1007/BF00724769