• 제목/요약/키워드: Anti-swing control

검색결과 55건 처리시간 0.023초

하이브리드 방식을 이용한 크레인의 앤티스웨이 제어 (Anti-sway Control of Crane System Using Hybrid Control Method)

  • 박흥수;김환성;박준형;이동훈;김상봉
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.67-72
    • /
    • 1998
  • In crane control system, it is required that the travelling time of crane must be reduced as much as possible and there is no the swing of load at the end and starting points. In this paper, we present a hybrid control method which includes two control methods of the optimal regulator and the velocity pattern control in order to realize high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. A 1/10 sized model crane of the usual gantry cranes is made and used to show the applicability of the developed hybrid control method. The effectiveness of developed hybrid control method is proved by experimental results which show us good performance for anti-sway control comparing to conventional velocity pattern control. Practically, it is expected that the proposed control system will make an important contribution to the automatic crane control system of the industrial fields.

  • PDF

콘테이너 크레인의 자동화에 관한 기초연구 (Fundamental Study for Automation of Container Cranes)

  • 신민생;이동철;김상봉
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.83-90
    • /
    • 1994
  • The container crane is still operated by skillfull human operators. So an automatic crane operation system is strongly required. In this paper, the digital control method is applied to position an anti-swing control for container crane. Two methods of digital optimal regulator control and digital redesign control are used for experiment. From these experimental results, it is respected that both methods can be applied effectively to an actual container crane operation.

  • PDF

무진동 크레인의 제어알고리즘 설계

  • 윤지섭;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.260-265
    • /
    • 1989
  • The micro-computer based automatic control of the overhead crane system is designed. Two control methodologies were suggested; the one is the anti-swing controller which improves poor damping characteristics of the crane and the other is the stop-position controller which minimizes the transportation position error. The input speed profile is automatically determined by the pre-programmed digital control algorithm. The experimental results show that these proposed controllers have excellent control performance as compared with those of the uncontrolled crane system.

  • PDF

최단시간 제어법을 이용한 크레인의 흔들림 방지제어 (Anti-sway Control of Crane System using Time Optimal Control Method)

  • 이진우;김상봉
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.23-29
    • /
    • 1997
  • In the control of crane system, the traversing time of the trolley must be reduced as much as possible and the swing must be stopped at the end point. To design the minimum time control system, Pontryagim maximum principle is applied. In order to implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. The overall performance of the closed loop system is evaluated by means of computer simulations and practical experiments in a broad range of working conditions. The effectiveness is proved through the experimental results for the anti-sway control of the load and the position control of trolly. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF

컨테이너크레인 시스템의 슬라이딩모드제어 (Sliding-Mode Control of Container Cranes)

  • 이숙재;박한;홍금식
    • 한국항해항만학회지
    • /
    • 제29권8호
    • /
    • pp.747-753
    • /
    • 2005
  • 본 논문은 컨테이너크레인의 흔들림제어의 한 방법으로, 이송증인 컨테이너가 임의의 이송궤적을 따라서 움직이도록 하고, 또한 트롤리 및 호이스트의 위치제어를 동시에 수행하는 가변구조제어에 관한 연구이다. 자동화터미널의 야석장에서 A지점에서 B지점으로 컨테이너를 옮기고자 할 때, 쌓여 있는 주위의 다른 컨테이너들을 피하면서 이송시키거나, 혹은 양하역 작업을 장애물이 존재하는 환경에서 수행할 때 주변의 장애물과 충돌하지 않도록 이송궤적을 만들어야 함은 필수적이다. 기존치 연구들이 무조건 흔들림이 작게끔 하는 것에 초점을 맞추었던 것에 반하여 본 논문에서는 비롯 흔들림이 발생하더라도 주어진 궤적을 추종하여 이송되게끔 하는 것에 그 특징이 있다. 트롤리 및 호이스트의 위치 및 속도오차 뿐 아니라 흔들림 각변위 및 각속도오차가 슬라이딩 평면으로 정의되며, 등속구간과 도착구간에서의 제어기가 각각 별도로 설계된다. 리아프노프 방법을 이용하여 안정성을 해석하였으며 파일럿 크레인을 이용한 실험결과를 제시한다.

극점배치기법을 이용한 트롤리 및 스프레더의 위치제어 (Position Control of the Trolley and Spreader Using Pole-placement Method)

  • 이태영;김면희;최원식
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.165-172
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane is derived. and the feedback gain matrix based on the pole-placement method is proposed to supress the swing motion and control the position of the crane. The performance of the controller for the crane model is simulated on the personal computer.

  • PDF

Anti-sway and Position 3D Control of the Nonlinear Crane System using Fuzzy Algorithm

  • Lee, Tae-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.66-75
    • /
    • 2002
  • The crane operation used fur transporting heavy loads causes a swinging motion with the loads due to the crane\`s acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and can cause serious damage. Ideally, the purpose of a crane system is to transport loads to a goal position as soon as possible without any oscillation of the rope. Currently, cranes are generally operated based on expert knowledge alone, accordingly, the development of a satisfactory control method that can efficiently suppress object sway during transport is essential. The dynamic behavior of a crane shows nonlinear characteristics. When the length of the rope is changed, a crane becomes a time-varying system thus the design of an anti-sway controller is very difficult. In this paper, a nonlinear dynamic model is derived for an industrial overhead crane whose girder, trolley, and hoister move simultaneously. Furthermore, a fuzzy logic controller, based on expert experiments during acceleration, constant velocity, deceleration, and stop position periods is proposed to suppress the swing motion and control the position of the crane. Computer simulation is then used to test the performance of the fuzzy controller with the nonlinear crane model.

지능제어를 이용한 크레인의 진동 및 위치 제어에 관한 연구 (Anti-swing and Position Control of Crane Using Intelligent Technique)

  • 이은경;이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.524-527
    • /
    • 1995
  • In most cases, a crane is controlled by an open-loop technique. That is, the controller tries to follow a given velocity profile that is designed to minimize the swing of rope and the transfer time. But such a system is not capable of handling various disturbances such as changing rope length and wind effect. In order to overcome this kind of difficulty, this research focuses on the design of a feedback controller using intelligent techniques such as fuzzy logic and neural network. These intelligent techniques has been emplyoyed in order to represent human knowledge and to imitate human learning. The deveped controllers have been evaluated via computer simulation

  • PDF

신경회로망 예측제어에 의한 Transfer Crane의 ATCS 개발에 관한 연구 (A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control)

  • 손동섭;이진우;이영진;이권순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 추계공동학술대회논문집
    • /
    • pp.113-119
    • /
    • 2002
  • 최근에, 자동화 크레인 제어 시스템은 빠른 속도와 신속한 수송이 요구되어 지고 있다 컨테이너 야드 내에서 크레인 시스템의 동작 동안, 스프레더에 매달린 컨테이너의 흔들림은 최소화로 되도록 크레인의 트롤리 위치와 와이어 로프 길이 제어가 필요하다. 크레인 시스템에서 자동 주행 제어 기술과 흔들림 방지 기술을 사용하여 무인 자동화 제어 시스템의 개발을 할 수 있는 핵심 기술이다. 그 결과 우리는 트랜스퍼 크레인 시스템 제어에서 자동 주행 제어를 위한 제어기를 설계하였다. 크레인 시스템을 통한 시뮬레이션 분석에서 다른 기존의 제어기들보다 우수한 제어 수행을 증명하였다.

  • PDF

Reflectivity Control at Substrate / Photoresist Interface by Inorganic Bottom Anti-Reflection Coating for Nanometer-scaled Devices

  • Kim, Sang-Yong;Kim, Yong-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권3호
    • /
    • pp.159-163
    • /
    • 2014
  • More accurate CD (Critical Dimension) control is required for the nanometer-scaled devices. However, since the reflectivity between substrate and PR (Photoresist) becomes higher, the CD (Critical Dimension) swing curve was intensified. The higher reflectivity also causes PR notching due to the pattern of sub-layer. For this device requirement, it was optimized for the thickness, refractive index(n) and absorption coefficient(k) in the bottom anti-reflective coating(BARC; SiON) and photoresist with the minimum reflectivity. The computational simulated conditions, which were determined with the thickness of 33 nm, n of 1.89 and k of 0.369 as the optimum condition, were successfully applied to the experiments with no standing wave for the 0.13um-device. At this condition, the lowest reflectivity was 0.44%. This optimum condition for BARC SiON film was applied to the process for 0.13um-device. The optimum SiON film as BARC to PR and sub-layer could be formed with the accurate CD control and no standing waver for the nanometer-scaled semiconductor manufacturing process.