• Title/Summary/Keyword: Anti-secretory

Search Result 64, Processing Time 0.029 seconds

Human sebocyte-based assay system for the screening of compounds to lower the lipid synthesis in sebaceous gland

  • Mun, Yeun-Ja;Lee, Seung-Yon;Im, Sook-Jung;Ahn, Sung-Hun;Lee, Jason;Woo, Won-Hong
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.508-518
    • /
    • 2003
  • SZ95 cell is an immortalized human sebaceous gland cell line that shows the morphologic, phenotypic and functional characteristics of normal human sebocytes. Sebocytes may play crucial parts in the pathophysiologic processes and disorders of the pilosebaceous unit. The secretory activity of the sebaceous gland is remarkably species-specific and acne is an exclusively human disease. Thus, this SZ95 cells offer possibilities for investigations on the physiology of the sebaceous gland and its role in sebum-associated skin disease such as acne. In this study, we investigated the effects of 13-cis-retinoic acid (13-cis-RA) and spironolactone, frequently used as therapeutic agents of acne, on the lipid synthesis and proliferation of human sebocytes. Cell proliferation was determined by MTT assay and cytoplasmic lipid droplets was shown by Oil-red a staining. Total lipid levels were biochemically estimated by the sulfo-phospho-vanilline reagent. 13-cis-RA and spironolactone significantly inhibited proliferation and lipid levels in a dose-dependent manner. Combined treatment with testosterone and 13-cis-RA or spironolactone resulted in a lower total lipid levels than that with androgen alone. These observations indicate that 13-cis-RA and spironolactone are potent inhibitors of both cell proliferation and lipid synthesis in human sebocytes. We will provide experimental evidence that this human sebocyte cell line serves as an adequate tool for evaluating the anti-lipogenic activity of various compounds potentially useful for the bioactive cosmeceutical ingredients on acne skin, and studying the intracellular biochemical markers depending on the types of compounds from various sources.

  • PDF

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

The Expression of Clara Cell Secretory Protein in BAL Fluid of Patients with Idiopathic Interstitial Pneumonia (특발성 간질성 폐렴 환자의 기관지 폐포 세척액 내의 Clara Cell Secretory Protein 발현에 대한 연구)

  • Um, Sang-Won;Han, Seon-Jin;Choi, Chang-Min;Lee, Chang-Hoon;Yoo, Chul-Gyu;Lee, Choon-Taek;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.2
    • /
    • pp.127-135
    • /
    • 2002
  • Background : Idiopathic interstitial pneumonia is characterized by chronic inflammation and pulmonary fibrosis. The clara cell 10 kD protein (CC10, also designated CC16) is synthesized by the bronchial epithelium and has been suggested to have a potent anti-inflammatory effect. Therefore, CC-10 might be a candidate for controlling the inflammatory events in patients with idiopathic interstitial pneumonia. The aim of this study was to determine if the degrees of pulmonary fibrosis in idiopathic interstitial pneumonia is associated with CC-10 in the BAL fluid. Materials and Methods : The BAL fluid was collected from 29 patients and 10 controls. Densitometric analysis of the western blot assay for the CC-10 was subsequently performed. The RI (relative intensity) of each band was compared according to the diagnosis, the radiological degrees of pulmonary fibrosis and the relative proportion of inflammatory cells in the BAL fluid. Results : There were no differences in the CC-10 expression levels in the BAL fluid between the patients (RI $77.5{\pm}75.8%$) and the controls ($70.7{\pm}39.8%$) (p>0.05). In addition, the degrees of pulmonary fibrosis and airway inflammation in patients with usual interstitial pneumonia were not associated with CC-10 expression in the BAL fluid (p>0.05). Conclusion : This study suggests that CC-10 expression is not associated with the degrees of pulmonary fibrosis in patients with usual interstitial pneumonia.

Generation of a monoclonal antibody against AgI/II, a cellular surface protein of Streptococcus mutans GS5 (Streptococcus mutans GS5의 세포막 단백질 Ag I/II에 대한 단항체의 생산)

  • Cheon, Cheol-Wan;Baik, Byeong-Ju;Yang, Yeon-Mi;Han, Ji-Hye;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.587-596
    • /
    • 2006
  • Most of oral streptococci express the Antigen I/II (AgI/II) proteins, cell wall anchored adhesions. AgI/II protein binds to salivary agglutinin glycoprotein, a component of tooth pellicle and to ligands in other bacteria. These associations play important roles in bacterial colonization. Recently, it was reported that diverse host molecules also interact with AgI/II protein and that these interactions induce inflammatory responses from host cells. Among mutans streptococci containing -type hemolytic activity, Streptococcus mutans is a causative agent for dental caries. Compared with many other strains of S. mutans, GS-5 strain is unique in that this bacterium expresses truncated secretory AgI/II protein due to the nonsense mutation in the agI/II gene. This indicates that S. mutans GS-5 has a different clinical role and a recent report supported this idea based on the results from clinically isolated S. mutans strains. Previously, we had cloned agI/II gene from S. mutans GS-5 and generated recombinant N-terminal AgI/II protein. In this study, we further produced a hybridoma line expressing anti-AgI/II monoclonal antibodies named as 1C11A. This antibody showed high sensitivity to AgI/II protein in Western blot and ELISA. This new reagent will provide a basis for investigating the mechanisms of AgI/II-related diseases.

  • PDF

Subsets of Inflammatory Cytokine Gene Polymorphisms are Associated with Risk of Carcinogenic Liver Fluke Opisthorchis viverrini-Associated Advanced Periductal Fibrosis and Cholangiocarcinoma

  • Surapaitoon, Arpa;Suttiprapa, Sutas;Mairiang, Eimorn;Khuntikeo, Narong;Pairojkul, Chawalit;Bethony, Jeffrey;Brindley, Paul J.;Sripa, Banchob
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.3
    • /
    • pp.295-304
    • /
    • 2017
  • Opisthorchis viverrini infection induces chronic inflammation, and a minor proportion of infected individuals develop advanced periductal fibrosis (APF) and cholangiocarcinoma (CCA). Inflammatory cytokines and/or their gene polymorphisms may link to these biliary pathologies. We therefore investigated associations among cytokine gene polymorphisms and cytokine production in 510 Thai cases infected with O. viverrini who presented with APF+ or APF-, as established by abdominal ultrasonography as well as in patients diagnosed with CCA. Levels of pro-inflammatory and anti-inflammatory cytokines were determined in culture supernatants after stimulation of peripheral blood mononuclear cells (PBMCs) with O. viverrini excretory-secretory (ES) products. Pro-inflammatory cytokines, IL-$1{\beta}$, IL-6, IFN-${\gamma}$, LT-${\alpha}$, and TNF-${\alpha}$ were significantly increased in CCA patients compared with non-CCA (APF- and APF+) cases. Polymorphisms in genes encoding IL-$1{\beta}$-511C/T, IL-6-174G/C, IFN-${\gamma}$+874T/A, LT-${\alpha}$+252A/G, and TNF-${\alpha}$-308G/A were then investigated by using PCR-RFLP or allele specific-PCR (AS-PCR) analyses. In the CCA cases, LT-${\alpha}$+252A/G and TNF-${\alpha}$-308G/A heterozygous and homozygous variants showed significantly higher levels of these cytokines than the wild type. By contrast, levels of cytokines in wild type of IFN-${\gamma}$+874T/A were significantly higher than the variants in CCA cases. IFN-${\gamma}$+874T/A polymorphisms were associated with advanced periductal fibrosis, whereas IL-6-174G/C polymorphisms were associated with CCA. To our knowledge, these findings provide the first demonstration that O. viverrini infected individuals carrying several specific cytokine gene polymorphisms are susceptible to develop fibrosis and CCA.

Immunohistochemical Study on the Cerebral Ganglion of African giant Snail, Achatina fulica (아프리카 왕달팽이(Achatina fulica) 뇌신경절의 면역조직화학적 구조)

  • 장남섭;한종민
    • The Korean Journal of Malacology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • An immunohisochemical study on the cerebral ganglion of the African giant snail, Achatina fulica. was conducted by applying the AB/AY staining and the avidin-bovine-peroxidase complex staining methods. The followings are the results obtained throughout the study. The cerebral ganglion of Achatina fulica is an ellipsoidal body of 2 x 1 mm in size, which is connected by the cerebral commissure of 1 mm in diameter. The cross-section through the cerebral ganglion, shaped like a butterfly, is divided into the medio-dorsal parts, the latero-dorsal parts, the caudo-dorsal parts, and the lateral lobes. In the medio-dorsal and latero-dorsal parts, the LG cells and the DG cells are found mixed, although the LG cells are dominant. In lateral lobe, however, the Y cells are quite dominant, while the LG cells and the DG cells are seldom found. The LG cells are 20-70 $\mu\textrm{m}$ in sizes and circular or ellipsoidal in shapes. They are stained light green with the AB/AY. 1 - 3 nucleoli are found in karyolymph, where granular chromantins are evenly distributed. In cytoplasm, it is found that the secretory granules are evenly developed.

  • PDF

Effect of Sodium Butyrate on Blood Glucose, Serum Lipid Profile and Inflammation in Streptozotocin-induced Diabetic Mice (스트렙토조토신으로 유도한 당뇨마우스에서 Sodium Butyrate의 혈당, 혈청 지질 성상 및 염증 억제에 미치는 영향)

  • Yun, Jung-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2015
  • Sodium butyrate is a short-chain fatty acid derivative found in foods, such as Parmesan cheese and butter and is produced by anaerobic bacteria fermentation of dietary fibers in the large intestine. There have been reports that butyrate prevented obesity, protected insulin sensitivity, and ameliorated dyslipidemia in dietary obese mice. This study investigated the effects of sodium butyrate on fasting blood glucose level and serum lipid profile in streptozotocin(STZ)-induced diabetic mice. Male C57BL/6 mice were fed AIN-93G for four weeks prior to intraperitoneal injections with STZ (100 mg/kg body weight). Diabetic mice had supplements of 5% sodium butyrate for four weeks. The 5% sodium butyrate diet significantly improved fasting blood glucose level and lipid profile in STZ-induced diabetic mice. Inflammation has been recognized to decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can directly affect beta cell function, leading to secretory dysfunction and increased apoptosis. Thus, anti-inflammatory therapies represented a potential approach for the therapy of diabetes and its complications. In this animal study, the 5% sodium butyrate supplementation also inhibited inflammatory cytokine production in STZ-induced diabetic mice. These results suggested that sodium butyrate can be a potential candidate for the prevention of diabetes and its complications.

Bioaccumulation of Heavy Metals in Intestine of Nacella concinna (남극삿갓조개 (Nacella concinna) 장의 중금속 축적에 관한 연구)

  • Lee, Yong-Seok;Jo, Yong-Hun;Han, Yeon-Soo;Kho, Weon-Gyu;Ahn, In-Young;Jeong, Kye-Heon
    • The Korean Journal of Malacology
    • /
    • v.22 no.1 s.35
    • /
    • pp.87-95
    • /
    • 2006
  • Immunohistochemical and ultrastuructural experiments were conducted to find out heavy metal accumulation in the intestine of an Antarctic gastropod Nacella concinna. According to the immune-histochemical experiment the apical cytoplasm of the intestinal epithelium showed positive reactions to anti-MT (rnotallothionein), indicating the presence of MT, a metal-binding protein involved in metal detoxifying process. In the transmission electron microscopic observations, the epithelial cells of the intestine exposed to Cd for over three hours showed irregular nuclear membranes, secretory granules, and probable metal granules. According to the SEM-EDS experiments on the intestine, concentration of Pb in the apical epithelium was in inverse proportion to that in the intestinal lumen. After exposing to Cd for over three days, S was rapidly reduced. Ca and Zn were rapidly increased after exposure to Cd. These elements are supposed to be concerned with the MT-reaction in the intestine. laken together, these data suggest that N. concinna could be used as a potential biomarker species.

  • PDF

Repression of CCSP Expression by KLF4 (KLF4에 의한 CCSP 발현 억제)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1432-1437
    • /
    • 2018
  • Clara cell secretory protein (CCSP) plays an important role in protecting the lungs from inflammation. This research focuses on identifying the cis-element for binding the repressor of CCSP gene expression. A DNase I footprinting experiment revealed three protected regions between -812 and -768 bp (45 bp) of the mCCSP promoter. One motif (D3: GCCTGGGAA) was 100% conserved across rat, hamster, and human. The addition of excess amounts of the D3 motif exhibited high competition within that 45 bp range in an electrophoretic mobility shift assay. However, when mutated D3 ($G{\underline{AA}}TG{\underline{TT}}AA$) was used, the competition was significantly reduced. This demonstrates that the D3 motif within that 45 bp region of the mCCSP promoter is an important site for the protein-DNA interaction. Transient transfection assays with -756 Luc resulted in highly decreased expression of CCSP than those with -812 Luc, suggesting that the 45 bp could function as a binding site for the repressor. Co-transfection of KLF4 exhibited significant repression of the -812 Luc but not the -768 Luc which clearly shows that KLF4 might function as a repressor for the CCSP gene and also suggests that the D3 motif is strongly involved in the binding of KLF4. In addition, when anti-KLF4 antibody was added, super-shifted bands were observed. This result demonstrates that KLF4 could function as a repressor by binding to this 45 bp region of the CCSP promoter and that the D3 motif might be involved in the specific binding of KLF4.

Recent Research Trends in Induction of Cellular Senescence by Microplastics (미세플라스틱에 의한 세포 노화 유도의 최근 연구 동향)

  • Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.594-607
    • /
    • 2024
  • Plastic products have long been widely used in both industrial and household applications. However, tiny plastic particles derived from plastic products, such as microplastics (MPs) and nanoplastics (NPs), can infiltrate the human body through inhalation, ingestion, or skin contact. Once inside cells via endocytosis, MPs and NPs (MNPs) can trigger autophagy, but lysosomal dysfunction can block autophagic flux. Accumulating in the cytoplasm, these particles induce cellular stress, including oxidative stress from free radicals, mitochondrial dysfunction, and increased inflammatory response. Meanwhile, cellular senescence is a hallmark of aging and is defined as the stable termination of the cell cycle in response to cell damage and stress. In particular, the accumulation of oxidative stress, a key factor in inducing cellular senescence, induces the expression of major senescence markers. Senescent cells increase the secretion of senescence-associated secretory phenotype, including inflammatory cytokines and chemokines. Despite growing interest in how MNPs induce cellular senescence, there remains a gap regarding their onset and therapeutic targets. Therefore, this review focuses on identifying recent research trends on how MNPs induce cellular aging in key human cell types and proposes future research directions to overcome these challenges.