• Title/Summary/Keyword: Anti-rolling

Search Result 89, Processing Time 0.028 seconds

Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves (자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션)

  • 윤현규;이경중;이창민
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.285-290
    • /
    • 2004
  • Wave exciting force and moment generate the motions of a ship in waves. Since ship motion exerts the negative influences on a crew's operability, the safety of cargos, passenger's comfort, etc, the anti-rolling devices may be required to reduce such motion. In this paper, the dynamics of the anti-rolling devices such as passive and active moving weight stabilizer and anti-rolling tank, and fin stabilizer are mathematically modeled. While the effect of the motion of the anti-rolling device on a ship was taken into consideration in roll mode only in the past, the 6 DOF coupled equations of motion between a ship and the anti-rolling devices are constituted. Finally the motion of a ship with anti-rolling devices in waves is simulated through the developed simulation program.

  • PDF

Rolling Reduction of Floating body by Anti-Rolling Pendulum (안티롤링 추를 이용한 부유체의 롤링 저감)

  • Park, Sok-Chu;Park, Kyung-Il;Yi, Geum-Joo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.106-107
    • /
    • 2016
  • Rolling motion of floating body might upset the body, make crews and passengers exhausted and/or apply forces to the structure to cause damage. Therefore for almost ships bilge keels are equipped, in special case fin stabilizer or gyroscope may be installed. This paper suggests the Anti-rolling pendulum to reduce roll motion to act the similar role with anti-rolling tank. The device suggested has more effective than the anti-rolling tank with 1/6 volume of the tank.

  • PDF

Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves (자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Lee, Chang-Min
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.347-352
    • /
    • 2004
  • Wave exciting force and moment generate the motions of a ship in waves. Since ship motion exerts the negative influences on a crew's operability, the safety of cargos, passenger's comfort, etc, the anti-rolling devices may be required to reduce such motion In this paper, the dynamics of the anti-rolling devices such as passive and active moving weight stabilizer and anti-rolling tank, and fin stabilizer are mathematically modeled While the effect of the motion of the anti-rolling device on a ship was taken into consideration in roll mode only in the past, the 6 DOF coupled equations of motion between a ship and the anti-rolling devices are constituted Finally the motion of a ship with anti-rolling devices in waves is simulated through the developed simulation program.

Development of Anti-Rolling Demo System for Mobile Harbor Using Maglev Type AMD (자기부상방식 AMD를 이용한 모바일 하버용 횡동요 저감 데모 장비의 개발)

  • Park, Cheol-Hoon;Ham, Sang-Yong;Kim, Byung-In;Lee, Sung-Whee;Park, Hee-Chang;Cho, Han-Wook;Moon, Seok-Jun;Chung, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2011
  • Mobile harbor which is a novel concept of ocean transportation to bring the containers from the cargo ship waiting on the ocean away is being focused now. To provide the mobile harbor with the stable loading/unloading condition, it is necessary to develop the oscillation mitigation technologies such as anti-rolling system. Anti-rolling system using AMD(Active Mass Driving) has merits that it can handle the disturbances more actively and mitigate the rolling oscillation faster than other type anti-rolling system. However, rack-and-pinion type AMD has problems such as big friction noise from gears and motor, wear and tear, and continuous maintenance. In this paper, novel anti-rolling system using Maglev type AMD for mobile harbor is suggested in order to resolve the problems caused by the friction. This novel anti-rolling system doesn't make any friction because it supports the moving mass by using magnetic levitation force and moves it by using propulsion force from the linear motor. The demo system of the novel anti-rolling system using maglev type AMD has been developed in order to investigate its feasibility. This paper presents the procedures and results of development of this demo system.

An Experimental Study on the Development of the Anti-Rolling Control System for a Ship (선체 횡동요 방지 장치 개발을 위한 실험적 연구)

  • 김영복;변정환;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF

Reducing Ship Rolling with a Anti-Rolling Pendulum (안티롤링 진자를 이용한 부유체의 횡동요 저감)

  • Park, Sok-Chu;Yi, Geum-Joo;Park, Kyung-Il
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.361-368
    • /
    • 2016
  • A ship's rolling motion can make crew and passengers sick and/or apply forces to the structure that cause damage.. Therefore bilge keels are equipped in most ships for anti-rolling. In special cases, anti-rolling tanks (ARTs), fin stabilizers, or gyroscopes can be installed. However, ARTs require a large area to install, and fin stabilizers and gyroscopes are costly to install and expensive to operate. This paper suggests a Anti-rolling pendulum (ARP) to reduce roll motion. ARPs acts like ARTs. However, the ARP has a circular shaped guidance arc instead of the string or wire of a simple pendulum. The device suggested has about 1/ 8 the weight and 1/ 6 the volume of a ART and is more effective. This study derives the nonlinear and linear differential equations of system motion.

An Experimental Study on Hull Form Development and Anti-Rolling Tank Performance of G/T 360ton Class Fishery Patrol Ship (총톤수 360톤급 어업지도선의 선형개선 및 횡요감소장치 성능에 관한 실험적 연구)

  • Lee, Kwi-Joo;Joa, Soon-Won;Kim, Kyoung-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.245-250
    • /
    • 2003
  • Hull form development and Anti-rolling tank of G/T 360ton class fishery patrol ship was carried out in the CWC at Chosun university, cooperatively with WJFEL(The West Japan Fluid Engineering Laboratory). Same size of 15 knots class fishery patrol ship was selected as a parent form(Model number: CU-015), and modified fore and after body hull form under the slightly lengthened to be suitable for the operation at 20 knots. This paper investigated for a rolling performance and an effective using method when fishery patrol ship was equipped with anti-rolling tank. On several occasions of rolling test was made reference to design data of a similar ship. Although the hull form was highly constrained in being limited to modification of a parent hull form, significant wave resistance improvement was made.

  • PDF

A Study on the Design of the Anti-Rolling Control System for a Ship (선박의 횡동용 방지 장치 개발에 관한 연구)

  • Kim, Young-Bok;Byun, Jung-Hoan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.438-444
    • /
    • 2001
  • In this paper, an actively controlled anti-rolling system is considered to reduced the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and the actuator is connected between the auxiliary mass and the ship. The actuator reacts against the auxiliary mass, applying inertial control corves to the ship to reduce the rolling motion in the desired manner. in this paper, we apply the PID controller to design the anit-rolling control system for the controlled hip. And the experimental result shows that the desirable control performance is achieved.

  • PDF

An Experimental Study on the Rolling Motion Control of a Ship Based on LMI Approach (LMI를 이용한 선박 횡동요 제어에 관한 실험적 연구)

  • 채규훈;김영복
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-66
    • /
    • 2003
  • In this paper, an actively controlled anti-rolling system is considered, in order to reduce the rolling motion of a ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and an actuator is connected between the auxiliary mass and the ship. The actuator reacts the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we introduce LMI based H$_{\infty}$ control approach to design the anti-rolling control system for the controlled ship. And the experimental results show that the desirable control performance can be achieved.

A Study on an Anti-Rolling System Design of a Ship with the Flaps

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1312-1318
    • /
    • 2004
  • Roll stabilization systems for ships are employed to increase comfort for passengers, maintain full working capabilities for members of the crew and prevent cargo damage. In this paper, we have investigated the usefulness of active stabilizing system to reduce ship rolling under disturbances, using varied reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps as the actuator are installed on the stern to reject rolling motion induced by disturbances such as wave. The action induced by flaps depends on power of disturbances and can take the ship balance. Especially, in this study we define the system parameters under the given system structure and design the controller to evaluate the usefulness of the proposed system.