• Title/Summary/Keyword: Anti-oxidative ability

Search Result 122, Processing Time 0.04 seconds

Recovery Effects from Oxidative Cell Damage by So-Hap-Hyang-Won on Bovine Aortic Endothelial Cells (BAEC)

  • Lee, Mi-Hwa;Kim, Ji-Young;Ju, Hyun-Yang;Lee, Ju-Young;Roh, Sang-Keun;Gu, Bon-Seong;Kim, Min-Ho;Han, Sang-Min;Kim, Hong-Sik;Choi, Won-Chul
    • The Journal of Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.71-81
    • /
    • 2003
  • So-Hap-Hyang-Won, a traditional oriental medicine used in the treatment of stroke patients, was examined for its ability to reverse the cell damage caused by lipid peroxidation products and oxidative stress in bovine aortic endothelial cells (BAEC). The effects of herbal medicine on cell proliferation and recovery of oxidative damaged situation were studied in BAEC, which was considered an appropriate in vitro model for stroke resulting from various vascular diseases prevalent in advanced age. In a clinical study of stroke patients, So-Hap-Hyang-Won appeared to improve considerably arm and leg movements as well as consciousness disturbance condition, compared with other traditional medicines used for stroke. When BAEC were treated with extracts of the lyophilized herbal medicines, only that of So-Hap-Hyang-Won stimulated cell proliferation and showed no toxicity even at high concentrations. In studies of BAEC treated with extracts of the lyophilized material of the 14 components of So-Hap-Hyang-Won, only the extract of Foeniculi Fructus stimulated cell growth at all concentrations tested. Moreover, when cells were treated with Foeniculi Fructus (10 and 100 mg/ml) extract after prior exposure to t-BHP ($l0\mu\textrm{M}$) or HNE ($0.2\mu\textrm{M}$), lipid peroxidation products which are known to be involved in aging and vascular diseases, or after the exposure to SIN-l ($500\mu\textrm{M}$), which generates nitric oxide (NO) and other reactive oxygen species, there was substantial recovery from the oxidative damage, presumably due to the radical-scavenging effect of Foeniculi Fructus extract. Foeniculi Fructus not only showed stimulatory effects on cell growth and cell damage repair in BAEC, but also appeared to show the most anti-aging activity among all the herbal components of So-Hap-Hyang-Won.

  • PDF

The Analysis of the Physiologic Activities of the Jeju Teas according to the Fermentational Degree (제주산 차의 발효 정도에 따른 생리활성 기능에 관한 연구)

  • Park, Shin-Young;Lee, Sun-Joo
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.236-242
    • /
    • 2011
  • In this present study, we investigated the anti-oxidant activity, the inhibition ability of lipid peroxidation, and the protective effect of cow pulmonary epithelium (CPAE) cells under oxidative stress using green tea and 3 types of fermented teas of Jeju Island. To compare the physiological activity of non-fermented and 3 types of fermented teas, the fermented time was controlled with 0 hr. (non fermented tea, G), 12 hrs. (20% fermented tea, F20), 17 hrs. (50% fermented tea, F50) and 24 hrs. (80% fermented tea, F80), respectively. Scavenging ability on DPPH radicals of 80 ${\mu}g/mL$ concentration of F20 was similar to that of 50 ${\mu}M$ epigallocatechin gallate (EGCG) but it was stronger than those of G, F50 and F80. All extracts tested inhibited LDL oxidation but G and F20 inhibited LDL oxidation 25~30% more than F50 and F80 at 40 ${\mu}g/mL$ concentration which was similar to that of 50 ${\mu}M$ EGCG. We observed that the CPAE cells treated with the tea extracts had a significant increase in cell viability, especially the cells under oxidative stress with 1 mM $H_2O_2$ as compared with the control group (no treatment with tea extracts). These findings suggested that all tea extracts containing fermented tea had a protective effect on oxidative stressed CPAE cells through their free radical scavenging activity. It can be concluded that F20 extracted from 20% fermented tea has the most significant antioxidative effects that inhibit lipid peroxidation and protect the CPAE cells under oxidative stress.

Catechol-mediated Functional Coatings of Polymer and Inorganic Nanostructures

  • Kim, Ji-Seon;Park, Jae-Yun;Son, Ho-Yeon;Lee, Hae-Sin;Nam, Yun-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.66-67
    • /
    • 2012
  • As polymer coatings of nano-structured surface become significant to obtain functionalized materials, catechol derived from a mussel protein has attracted increasing attention for its universal adhesiveness. In addition to the unique adhesion property, its reducing ability of metal ions during oxidative polymerization to polydopamine (pD) widely expands the application of catechol molecules in the field of surface modification. In this study, we present the catechol conjugated smart polymer coatings for regulating surface properties such as wettability and anti-fouling effects. In additino, the in situ silver coating of electrospun polymer nanofibers using a silver-catechol redox reaction is presented as a simple method to produce metal nanostructures.

  • PDF

Synthesis and Nrf2 Activating Ability of Thiourea and Vinyl Sulfoxide Derivatives

  • Shim, Young Sun;Hwang, Hyun Sook;Nam, Ghilsoo;Choi, Kyung Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2317-2320
    • /
    • 2013
  • Thiourea and vinyl sulfoxide derivatives were designed based on the structures of sulforaphane and gallic acid, prepared and tested for HO-1 inducing activity as a measure of Nrf2 activation, and inhibitory effect on NO production as a measure of anti-inflammatory activity. Both series of compounds showed moderate activity on HO-1 induction, and no inhibitory effect on NO production. Interestingly the thiourea compound 6d showed better HO-1 induction (71% SFN) than the corresponding isothiocyanate compound 6a (55% SFN). Overall, it seemed that more efficient electrophile is needed to get more effective Nrf2 activator.

Insulin-like growth factor-1 improves diabetic cardiomyopathy through antioxidative and anti-inflammatory processes along with modulation of Akt/GSK-3β signaling in rats

  • Wang, Cheng Yu;Li, Xiang Dan;Hao, Zhi Hong;Xu, Dongyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.613-619
    • /
    • 2016
  • Diabetic cardiomyopathy (DCM), a serious complication of diabetes mellitus, is associated with changes in myocardial structure and function. This study sought to explore the ability of insulin-like growth factor-1 (IGF-1) to modulate DCM and its related mechanisms. Twenty-four male Wistar rats were injected with streptozotocin (STZ, 60 mg/kg) to mimic diabetes mellitus. Myocardial fibrosis and apoptosis were evaluated by histopathologic analyses, and relevant proteins were analyzed by Western blotting. Inflammatory factors were assessed by ELISA. Markers of oxidative stress were tested by colorimetric analysis. Rats with DCM displayed decreased body weight, metabolic abnormalities, elevated apoptosis (as assessed by the bcl-2/bax ratio and TUNEL assays), increased fibrosis, increased markers of oxidative stress (MDA and SOD) and inflammatory factors (TNF-${\alpha}$ and IL-$1{\beta}$), and decreased phosphorylation of Akt and glycogen synthase kinase (GSK-$3{\beta}$). IGF-1 treatment, however, attenuated the metabolic abnormalities and myocardial apoptosis, interstitial fibrosis, oxidative stress and inflammation seen in diabetic rats, while also increasing the phosphorylation levels of Akt and GSK-$3{\beta}$. These findings suggest that IGF-1 ameliorates the pathophysiological progress of DCM along with an activation of the Akt/GSK-$3{\beta}$ signaling pathway. Our findings suggest that IGF-1 could be a potential therapeutic choice for controlling DCM.

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Manna, Prasenjit;Sinha, Mahua;Sil, Parames C.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.382-395
    • /
    • 2007
  • The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

Antioxidant Activities and Phenolic Compounds Composition of Extracts from Mulberry (Morus alba L.) Fruit

  • Bang, In-Soo;Park, Hee-Yong;Yuh, Chung-Suk;Kim, Ae-Jung;Yu, Chang-Yeon;Ghimire, Bimal;Lee, Han-Shin;Park, Jae-Gun;Choung, Myoung-Gun;Lim, Jung-Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.120-127
    • /
    • 2007
  • The objective of this research was to evaluate the ability of water and ethanol extracts from mulberry fruit (Morus alba L.) to influence the inhibitory activity of angiotensin converting enzyme (ACE) and xanthine oxidase(XOase). The total phenol contents and sixteen phenolic compounds were investigated in water and ethanol extracts. In order to understand the factors responsible for the potent antioxidant and antihypertensive ability of mulberry, it has been evaluated for anti-oxidative activity using Fenton's reagent/ethyl linoleate system and for free radical scavenging activity using the 1,1-diphenyl-2-picryl hydrazyl free radical generating system. The total phenol contents and total of phenolic compounds in ethanol extract showed higher levels than water extract in mulberry fruit six phenolic compounds (chlorogenic acid, narigin, syringic acid, quercetin, naringenin, kampferol) has a higher individual phenolic compound content in the 60% ethanol extraction than 80% ethanol extract. The inhibitory activity on angiotensin converting enzyme (ACE) were highest in 80% ethanol extract (9.0%). Also, activity of xanthine oxidase(XOase) inhibition appeared highest in 80% ethanol extracts and correlated well with the total phenolic content, which was modulated by the concentration of individual phenolic compounds. This result revealed, that strong biological activity was caused by specific phenol compound contents. Utilization of water and ethanol extracts from mulberry fruit are expected to be good candidate for development into source of free radical scavengers and anti-hypertentive activity

Antioxidant and Anti-inflammatory Effects of Atoberry in Atopic Dermatitis-like NC/Nga Mouse Model (아토피 피부염 유사 NC/Nga 마우스 모델에서 아토베리의 항산화 및 항염증효과)

  • Mok, Ji-Ye;Park, Kwang-Hyun;Ryu, Cheol;Cho, Jung-Keun;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.302-309
    • /
    • 2010
  • Oxidative stress has been implicated in cutaneous damage in various inflammatory skin diseases, including atopic dermatitis (AD). Atoberry is the herb medicine extract which is composed with Spirodelae Herba, Xanthii Fructus, Houttuyniae Herba, Taraxaci Herba, Retinervus Luffae Fructus, Platycodi Radix, and Scutellariae Radix. In this study, we investigated the antioxidant and anti-inflammatory effects of Atoberry in AD-like skin lesion NC/Nga mice. Murine AD-like skin lesions were made by painting Dermatophagoides farinse (Df) extract. Atoberry significantly increased electron donating ability (DPPH), nitrite scavenging (NO) and superoxide dismutase (SOD) activities in dose dependant. Topically applied Atoberry significantly reduced clinical severity score, ear thickness and histological grade in AD-like skin lesion NC/Nga mice. In addition, the serum levels of IgE, NO and prostaglandin E2 were significantly reduced by Atoberry. Futhermore, skin tissue levels of SOD, catalase and glutathione peroxidase (GPx) were significantly reduced by Atoberry. These results demonstrate that topical application of Atoberry may be improve the AD-like skin lesion by antioxidant and anti-inflammatory effects.

Effects of Extracts from Dried Yam on Antioxidant and Growth of Human Cancer Cell Lines (건조 마 추출물의 항산화 및 인체 암세포 증식 억제 효과)

  • Jang, Joo-Ri;Hwang, Seong-Yeon;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1365-1372
    • /
    • 2010
  • We investigated the inhibitory effects of solvent extracts from dried yam on $H_2O_2$-induced oxidative stress and growth of cancer cell lines (HT1080 human fibrosarcoma and HT-29 human colon cancer cells). Yam (Dioscoreacea) has been recognized as a healthy food due to its various biological activities, such as anti-obesity, anti-constipation, anti-proliferation, and anti-mutagenic activities, as well as its ability to decrease blood glucose and cholesterol levels. In order to determine the protective effect on $H_2O_2$-induced oxidative stress, DCFH-DA (dichlorodihydrofluorescin diacetate) assay was conducted. Acetone with methylene chloride (A+M) extract of dried yam appeared to reduce the levels of intracellular reactive oxygen species (ROS) with dose responses. Among the fractions, 85% aq. methanol fraction showed the highest protective effect on production of lipid peroxides. Inhibitory effects of A+M and methanol (MeOH) extracts on the growth of HT1080 and HT-29 cancer cells increased in a dose dependent manner. The treatments of n-hexane, 85% aq. methanol and n-butanol fractions (${\geqq}0.5$ mg/ml concentrations) significantly inhibited the growth of both cancer cells (p<0.05). From these results, 85% aq. methanol fraction showed inhibitory effects on cellular oxidation and growth of human cancer cells, suggesting that this fraction may contain active compounds of dried yam.

Fucoidan Increases Phagocytic Capacity and Oxidative Burst Activity of Canine Peripheral Blood Polymorphonuclear Cells Through TNF-${\alpha}$ from Peripheral Blood Mononulear Cells (Fucoidan에 의한 개 말초혈액 단핵구세포에서 생산된 TNF-${\alpha}$의 다형핵백혈구에 대한 탐식능과 순간산소과소비력의 증가효과)

  • Kim, Soo-Hyun;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.2
    • /
    • pp.183-189
    • /
    • 2011
  • The objective of this study was to examine the effect of fucoidan on the phagocytic capapcity and oxidative burst activity (OBA) of canine peripheral blood polymorphonuclear cells (PMNs). The phagocytic capacity and OBA of PMNs were evaluated simultaneously by using a flow cytometer. Fucoidan itself did not cause any direct effect on the phagocytic capacity and OBA of PMNs. However, the phagocytic capacity and OBA of PMNs were enhanced by the culture supernatant from PBMCs treated with fucoidan. The phagocytic capacity and OBA of PMNs were also increased by treatment with recombinant canine (rc) tumor necrosis factor (TNF)-${\alpha}$. The ability of the culture supernatant from fucoidan-treated PBMCs to stimulate the phagocytic capacity and OBA of PMNs was inhibited by addition of anti-rc TNF-${\alpha}$ polyclonal antibody (PAb) prior to the culture. The amount of TNF-${\alpha}$ in the culture supematant from PBMCs was shown to increase upon treatment of fucoidan as compared with that of vehicle-treated PBMCs culture supematant. The level of TNF-${\alpha}$ mRNA expression in PBMCs was also up-regulated by the fucoidan treatment. These results suggest that fucoidan has an immunoenhancing effect on the phagocytic capacity and OBA of canine PMNs, which is mainly mediated by TNF-${\alpha}$ released from fucoidan-stimulated PBMCs.