• Title/Summary/Keyword: Anti-neurodegenerative effect

Search Result 89, Processing Time 0.029 seconds

Neuroprotective Effects of Kaempferol, Quercetin, and Its Glycosides by Regulation of Apoptosis (Kaempferol, quercetin 및 그 배당체들의 apoptosis 조절을 통한 신경세포 보호 효과)

  • Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.286-293
    • /
    • 2019
  • Alzheimer's disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta ($A{\beta}$) in the brain. In the present study, we investigated the neuroprotective effects of four flavonoids such as kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-${\beta}$-D-glucoside against neuronal apoptosis induced by $A{\beta}$ in SH-SY5Y neuronal cells. Treatment with $A{\beta}$ decreased cell viability compared to the non-treated normal group. However, treatment with the four flavonoids increased cell viability in SH-SY5Y cells treated with $A{\beta}$. In addition, we measured the expression of apoptosis-related proteins such as Bcl-2-associated X protein (Bax) and cleaved caspase-9. Treatment with the four flavonoids down-regulated Bax and cleaved caspase-9 in $A{\beta}$-treated SH-SY5Y neuronal cells. Overall, the results of the present study demonstrated the neuroprotective effect of flavonoids by anti-apoptotic activity in $A{\beta}$-induced SH-SY5Y neuronal cells. These results suggest that these four flavonoids would be useful therapeutic and prevention agents for AD.

Adzuki bean (Vigna angularis) extract reduces amyloid-β aggregation and delays cognitive impairment in Drosophila models of Alzheimer's disease

  • Miyazaki, Honami;Okamoto, Yoko;Motoi, Aya;Watanabe, Takafumi;Katayama, Shigeru;Kawahara, Sei-ichi;Makabe, Hidefumi;Fujii, Hiroshi;Yonekura, Shinichi
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Alzheimer's disease is a neurodegenerative disease that induces symptoms such as a decrease in motor function and cognitive impairment. Increases in the aggregation and deposition of amyloid beta protein ($A{\beta}$) in the brain may be closely correlated with the development of Alzheimer's disease. In this study, the effects of an adzuki bean extract on the aggregation of $A{\beta}$ were examined; moreover, the anti-Alzheimer's activity of the adzuki extract was examined. MATERIALS/METHODS: First, we undertook thioflavin T (ThT) fluorescence analysis and transmission electron microscopy (TEM) to evaluate the effect of an adzuki bean extract on $A{\beta}_{42}$ aggregation. To evaluate the effects of the adzuki extract on the symptoms of Alzheimer's disease in vivo, $A{\beta}_{42}$-overexpressing Drosophila were used. In these flies, overexpression of $A{\beta}_{42}$ induced the formation of $A{\beta}_{42}$ aggregates in the brain, decreased motor function, and resulted in cognitive impairment. RESULTS: Based on the results obtained by ThT fluorescence assays and TEM, the adzuki bean extract inhibited the formation of $A{\beta}_{42}$ aggregates in a concentration-dependent manner. When $A{\beta}_{42}$-overexpressing flies were fed regular medium containing adzuki extract, the $A{\beta}_{42}$ level in the brain was significantly lower than that in the group fed regular medium only. Furthermore, suppression of the decrease in motor function, suppression of cognitive impairment, and improvement in lifespan were observed in $A{\beta}_{42}$-overexpressing flies fed regular medium with adzuki extract. CONCLUSIONS: The results reveal the delaying effects of an adzuki bean extract on the progression of Alzheimer's disease and provide useful information for identifying novel prevention treatments for Alzheimer's disease.

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao;Zhang, Tao;Liu, Wei;Chen, Yong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1096-1106
    • /
    • 2018
  • Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

Phosphodiesterase-5 Inhibitor Attenuates Anxious Phenotypes and Movement Disorder Induced by Mild Ischemic Stroke in Rats

  • Yu, Yeon Hee;Kim, Seong-Wook;Kang, Juhyeon;Song, Yejin;Im, yHyuna;Kim, Seo Jeong;Yoo, Dae Young;Lee, Man-Ryul;Park, Dae-Kyoon;Oh, Jae Sang;Kim, Duk-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.665-679
    • /
    • 2022
  • Objective : Patients with mild ischemic stroke experience various sequela and residual symptoms, such as anxious behavior and deficits in movement. Few approaches have been proved to be effective and safe therapeutic approaches for patients with mild ischemic stroke by acute stroke. Sildenafil (SIL), a phosphodiesterase-5 inhibitor (PDE5i), is a known remedy for neurodegenerative disorders and vascular dementia through its angiogenesis and neurogenesis effects. In this study, we investigated the efficacy of PDE5i in the emotional and behavioral abnormalities in rats with mild ischemic stroke. Methods : We divided the rats into four groups as follows (n=20, respectively) : group 1, naïve; group 2, middle cerebral artery occlusion (MCAo30); group 3, MCAo30+SIL-pre; and group 4, MCAo30+SIL-post. In the case of drug administration groups, single dose of PDE5i (sildenafil citrate, 20 mg/kg) was given at 30-minute before and after reperfusion of MCAo in rats. After surgery, we investigated and confirmed the therapeutic effect of sildenafil on histology, immunofluorescence, behavioral assays and neural oscillations. Results : Sildenafil alleviated a neuronal loss and reduced the infarction volume. And results of behavior task and immunofluorescence shown possibility that anti-inflammation process and improve motor deficits sildenafil treatment after mild ischemic stroke. Furthermore, sildenafil treatment attenuated the alteration of theta-frequency rhythm in the CA1 region of the hippocampus, a known neural oscillatory marker for anxiety disorder in rodents, induced by mild ischemic stroke. Conclusion : PDE5i as effective therapeutic agents for anxiety and movement disorders and provide robust preclinical evidence to support the development and use of PDE5i for the treatment of mild ischemic stroke residual disorders.

Neuroprotective effect of Coreopsis lanceolata extract against hydrogen-peroxide-induced oxidative stress in PC12 cells

  • Kyung Hye Seo;Hyung Don Kim;Jeong-Yong Park;Dong Hwi Kim;Seung-Eun Lee;Gwi Young Jang;Yun-Jeong Ji;Ji Yeon Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • The present study investigated the neuroprotective effects of Coreopsis lanceolate extract against hydrogen-peroxide (H2O2)-induced oxidative damage and cell death in pheochromocytoma 12 (PC12) cells. Reactive oxygen species (ROS), 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid) diammonium salt, and 1,1-diphenyl-2-picrrylhydrazyl radical scavenging activities, as well as the expression levels of proteins associated with oxidative damage and cell death were investigated. According to the results, C. lanceolate extract exhibited inhibitory activity against intracellular ROS generation and cell-damaging effects induced by hydroxyl radicals in a dose-dependent manner. Total phenolic and flavonoid contents were 22.3 mg·g-1 gallic acid equivalent and 16.2 mg·g-1 catechin equivalent, respectively. Additionally, a high-performance liquid chromatography (HPLC) assay based on the internal standard method used to detect phenolic compounds. The phenolic compounds identified in C. lanceolata extract contained (+)-catechin hydrate (5.0 ± 0.0 mg·g-1), ferulic acid (1.6 ± 0.0 mg·g-1), chlorogenic acid (1.5 ± 0.0 mg·g-1), caffeic acid (1.2 ± 0.0 mg·g-1), naringin (0.9 ± 0.0 mg·g-1), and p-coumaric acid (0.5 ± 0.0 mg·g-1). C. lanceolata extract attenuated pro-apoptotic Bax expression levels and enhanced the expression levels of anti-apoptotic Bcl-2, caspase-3, and caspase-9 proteins. Therefore, C. lanceolata is a potential source of materials with neuroprotective properties against neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases.

Anti-amnesic and Neuroprotective Effects of Artemisia argyi H. (Seomae mugwort) Extracts (섬애쑥 추출물의 뇌 신경세포 보호효과에 의한 학습 및 기억능력 개선 효과)

  • Ha, Gi-Jeong;Lee, Doo Sang;Seung, Tae Wan;Park, Chang Hyeon;Park, Seon Kyeong;Jin, Dong Eun;Kim, Nak-Ku;Shin, Hyun-Yul;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • The anti-amnesic effect of Artemisia argyi H against trimethyltin (TMT)-induced learning and memory impairment and its neuroprotective effect against $H_2O_2$-inducedoxidative stress were investigated. Cognitive behavior was examined by Y-maze and passive avoidance test for 4 weeks, which showed improved cognitive functions in mice treated with the extract. In vitro neuroprotective effects against $H_2O_2$-induced oxidative stress were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide and lactate dehydrogenase (LDH) assays. A. argyi H. extract showed protective effects against $H_2O_2$-induced neurotoxicity; moreover, LDH release into the medium was inhibited. Finally, high-performance liquid chromatography (HPLC) analysis showed that eupatilin and jaceosidin were the major phenolic compounds in A. argyi H. extract. These results suggest that A. argyi H. could be a good source of functional substances to prevent neurodegenerative diseases.

Naringin Protects Ovalbumin-induced Asthma through the Down-regulation of MMP-9 Activity and GATA-3 Gene (Naringin에 의한 천식치료 효과연구)

  • Lee, Chang-Min;Chang, Jeong-Hyun;Jung, In-Duk;Jeong, Young-Il;Tae, Noh-Kyung;Park, Hee-Ju;Kim, Jong-Suk;Shin, Yong-Kyoo;Park, Sung-Nam;Park, Yeong-Min
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.735-743
    • /
    • 2009
  • The common word flavonoids is often used to classify a family of natural compounds, highly abundant in all higher plants, that have received significant therapeutic interest in recent years. Naringin is associated with a reduced risk of heart disease, neurodegenerative disease, cancer and other chronic diseases; however the molecular basis of this effect remains to be elucidated. Thus we attempted to elucidate the anti-allergic effect of Naringin in ovalbumin (OVA)-induced asthma model mice. The OVA-induced mice showed allergic reactions in the airways. These included an increase in the number of eosinophils in bronchoalveolar lavage (BAL) fluid, an increase in inflammatory cell infiltration into the lung around blood vessels and airways, airway luminal narrowing, and the development of airway hyper-responsiveness (AHR). The administration of Naringin before the last airway OVA challenge resulted in a significant inhibition of all asthmatic reactions. Accordingly, this study may provide evidence that Naringin plays a critical role in the amelioration of the pathogenetic process of asthma in mice. These findings provide new insight into the immunopharmacological role of Naringin in terms of its effects on asthma in mice.

Effect of Reserpine on the Behavioral Defects, Aβ-42 Deposition and NGF Metabolism in Tg2576 Transgenic Mouse Model for Alzheimer's Disease (알츠하이머질환 모델동물인 Tg2576마우스의 행동, Aβ-42 침적, 신경성장인자 대사에 미치는 reserpine의 영향)

  • Go, Jun;Choi, Sun Il;Kim, Ji Eun;Lee, Young Ju;Kwak, Moon Hwa;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.812-824
    • /
    • 2013
  • Reserpine, an anti-hypertensive drug, is able to positively modulate several phenotypes associated with $A{\beta}$ toxicity in a Caenorhabditis elegans model of Alzheimer's disease (AD). We investigated into the therapeutic effects of reserpine on mammalian neurodegenerative disorders, and found that significant alteration of the key factors influencing AD was detected in Tg2576 mice after reserpine treatment for 30 days. The aggressive behavior of Tg2576 mice was significantly improved upon reserpine treatment, whereas their social contact was consistently maintained. Furthermore, the levels of $A{\beta}$-42 peptide in the hippocampus of the brain and blood serum were lower in the reserpine-treated group than in the vehicle-treated group. Among g-secretase components, the expression levels of PS-2, Pen-2, and APH-1 were slightly lower in reserpine-treated Tg2576 mice, although a significant change in nicastrin (NCT) expression was not detected. Furthermore, the serum level of nerve growth factor (NGF) increased in reserpine-treated Tg2576 mice compared with vehicle-treated mice. Among down-stream effectors of the NGF receptor TrkA signaling pathway, reserpine treatment induced elevation of TrkA phosphorylation and reduction of ERK phosphorylation. In addition, in the NGF receptor $p75^{NTR}$ signaling pathway, the expression levels of $p75^{NTR}$ and Bcl-2 were enhanced in reserpine-treated Tg2576 mice compared with vehicle-treated mice, whereas the expression level of RhoA declined. Overall, these results suggest that reserpine can help relieve AD pathogenesis in Tg2576 mice through downregulation of $A{\beta}$-42 deposition, alteration of ${\gamma}$-secretase components, and regulation of NGF metabolism.

Morin Protects Normal Human Dermal Fibroblasts from Ultraviolet B-induced Apoptosis (자외선 B로 유도된 아포토시스로부터 모린의 정상 인간 피부 섬유아세포 보호효과)

  • Jeong Eon Park;Ao Xuan Zhen;Mei Jing Piao;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Jin Won Hyun
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.305-314
    • /
    • 2023
  • Ultraviolet B (UVB) irradiation causes skin diseases by inducing cellular oxidative stress, photoaging, and inflammation. This study aimed to investigate the protective effects of morin against UVB-induced oxidative stress in normal human dermal fibroblasts (NHDFs). Morin has been reported to be a potential therapeutic candidate for oxidative stress-mediated diseases, neurodegenerative diseases, and inflammation. Since morin has been identified as a potential antioxidant, we speculated that morin could alleviate UVB-induced apoptosis in NHDFs. Cell viability and intracellular reactive oxygen species (ROS) levels were measured using the MTT assay, H2DCFDA, and the DHE staining method, respectively. Lipid peroxidation and protein carbonyl formation were tested using ELISA kits. DNA fragmentation and comet assay were used to assess DNA damage. Apoptotic bodies were analyzed using Hoechst 33342 staining and TUNEL assay. The expression of apoptosis-related proteins was examined using Western blot analysis. Morin showed a cyto-protective effect by scavenging UVB-induced ROS, increasing the expression of antioxidant-related proteins and inhibiting UVB-induced oxidative alterations such as lipid peroxidation, protein carbonylation, and DNA damage. Morin protects against UVB-induced cell apoptosis by inhibiting Bcl-2-associated X protein, caspase-9, and caspase-3 expression, while increasing the expression of the anti-apoptotic protein Bcl-2. These effects of morin were conferred through decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. The results demonstrated that morin may be developed as a preventive/therapeutic drug to be used to prevent UVB-induced skin damage.