• Title/Summary/Keyword: Anti-invasive activity

Search Result 58, Processing Time 0.027 seconds

Ellagic Acid Inhibits Migration and Invasion by Prostate Cancer Cell Lines

  • Pitchakarn, Pornsiri;Chewonarin, Teera;Ogawa, Kumiko;Suzuki, Shugo;Asamoto, Makoto;Takahashi, Satoru;Shirai, Tomoyuki;Limtrakul, Pornngarm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2859-2863
    • /
    • 2013
  • Polyphenolic compounds from pomegranate fruit extracts (PFEs) have been reported to possess antiproliferative, pro-apoptotic, anti-inflammatory and anti-invasion effects in prostate and other cancers. However, the mechanisms responsible for the inhibition of cancer invasion remain to be clarified. In the present study, we investigated anti-invasive effects of ellagic acid (EA) in androgen-independent human (PC-3) and rat (PLS10) prostate cancer cell lines in vitro. The results indicated that non-toxic concentrations of EA significantly inhibited the motility and invasion of cells examined in migration and invasion assays. The EA treatment slightly decreased secretion of matrix metalloproteinase (MMP)-2 but not MMP-9 from both cell lines. We further found that EA significantly reduced proteolytic activity of collagenase/gelatinase secreted from the PLS-10 cell line. Collagenase IV activity was also concentration-dependently inhibited by EA. These results demonstrated that EA has an ability to inhibit invasive potential of prostate cancer cells through action on protease activity.

Metastatic Inhibitory and Radical Scavenging Efficacies of Saponins Extracted from the Brittle Star (Ophiocoma erinaceus)

  • Amini, Elaheh;Nabiuni, Mohammad;Baharara, Javad;Parivar, Kazem;Asili, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4751-4758
    • /
    • 2015
  • Echinodermata use saponins in chemical defense against pathogens and predators. The molecular mechanisms of antimetastatic effects of brittle star saponins are still unknown. The present study examined antioxidant capacity and invasive ability in HeLa carcinoma cells exposed to brittle star crude saponins. Discolorating methods with DPPH and ABTS and expression of SOD-2 with RT-PCR were used to estimate the antioxidant activity. The anti-invasive activity of extracted saponins was examined through adhesion of HeLa cells to extracellular matrix, wound healing and evaluation of the mRNA levels of MMP-2 and MMP-9 by real time-PCR. The results showed that extracted saponins had cytotoxicity against cervical cancer cells and ABTS and DPPH scavenging properties with $IC_{50}$ values of 604.5, $1012{\mu}g/ml$, respectively. Further, we found that, in wound healing assay, brittle star saponins could prevent invasion of HeLa cells in a concentration dependent manner. Furthermore, cell adhesion assay demonstrated blockage of cell attachment to extracellular matrix with an $IC_{50}$ concentration of $16.1{\mu}g/ml$. The significant dose dependent down regulation of MMP-2 and MMP-9 in treated cells demonstrated that isolated saponins can decline tumor metastasis in vitro. The brittle star saponins remarkably prevented cervical cancer invasion and migration associated with down regulation of matrix metalloproteinase expression. Therefore, saponins could be suggested as an anti-invasive candidate against cervical cancer and an antioxidant as well.

A Study on functional cosmetic ingredients of the invasive plant Spartina anglica (생태교란종 영국갯끈풀의 기능성화장품 원료로서 효능 연구)

  • Song, Soli;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.144-152
    • /
    • 2022
  • The Spartina anglica is recognized as a highly invasive plant and active eradication methods are required. In this study, we aimed to determine the physiologic activities of Spartina anglica extracts as a cosmetic ingredient. Antioxidant properties were investigated by different chemical methods including radical quenching (DPPH and ABTS), reducing power(FRAP) assay and aerial part of S. anglica(SAA) extract presented the strongest antioxidant activities. The significant cytotoxicity was not observed up to a concentration of 0.5 mg/mL in RAW264.7 cells and NHDF cells. The anti-inflammatory activity of S. anglica belowground(SAB) extract had strong effects on cell-based systems, including LPS-induced NO and cytokines(TNF-a and IL-6) production in RAW264.7 cells. Collagen synthesis and skin hydration gene expression of S. anglica extract showed the highest anti-wrinkle and moisturizing effect in NHDF cells. Results presented in this study tend to show that the ethanol extracts of S. anglica could be exploited as useful-bio-resource for bioactive substances in functional cosmetics.

Anti-invasive Activity against Cancer Cells of Phytochemicals in Red Jasmine Rice (Oryza sativa L.)

  • Pintha, Komsak;Yodkeeree, Supachai;Pitchakarn, Pornsirit;Limtrakul, Pornngarm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4601-4607
    • /
    • 2014
  • Red rice contains pharmacological substances including phenolics, oryzanol, tocotrienol and tocopherol. Recently, red rice extract has been employed as a source of antioxidants for inhibition of tumor growth. This study was carried out to evaluate the anti-invasion effects of red rice extract fractions on cancer cells. It was found that at $100{\mu}g/ml$ of crude ethanolic extract (CEE), hexane fraction (Hex) and dichloromethane fraction (DCM) could reduce HT1080 and MDA-MB-231 cancer cell invasion. Hex and DCM revealed higher potency levels than CEE, whereas an ethyl acetate fraction (EtOAc) had no effect. Gelatin zymography revealed that Hex decreased the secretion and activity of matrix metalloproteinase-2 and -9 (MMP-2 and-9). In contrast, the DCM fraction exhibited slightly effect on MMPs secretion and had no effect on MMPs activity. Collagenase activity was significantly inhibited by the Hex and DCM fractions. High amounts of ${\gamma}$-oryzanol and ${\gamma}$-tocotrienol were found in the Hex and DCM fractions and demonstrated an anti-invasion property. On the other hand, proanthocyanidin was detected only in the CEE fraction and reduced MDA-MB-231 cells invasion property. These observations suggest that proanthocyanidin, ${\gamma}$-oryzanol and ${\gamma}$-tocotrienol in the red rice fractions might be responsible for the anti invasion activity. The red rice extract may have a potential to serve as a food-derived chemotherapeutic agent for cancer patients.

Anticancer Properties of Teucrium persicum in PC-3 Prostate Cancer Cells

  • Tafrihi, Majid;Toosi, Samane;Minaei, Tayebeh;Gohari, Ahmad Reza;Niknam, Vahid;Arab Najafi, Seyed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.785-791
    • /
    • 2014
  • Crude extracts or phytochemicals obtained from some plants have potential anti-cancer properties. Teucrium persicum is an Iranian endemic plant belonging to the Lamiaceae family which has traditionally been used to relieve abdominal pains. However, the anti-cancer properties of this species of the Teucrium genus have not been investigated previously. In this study, we have used a highly invasive prostate cancer cell line, PC-3, which is an appropriate cell system to study anti-tumor properties of plants. A methanolic extract obtained from T persicum potently inhibited viability of PC-3 cells. The viability of SW480 colon and T47D breast cancer cells was also significantly decreased in the presence of the T persicum extract. Flow cytometry suggested that the reduction of cell viability was due to induction of apoptosis. In addition, the results of wound healing and gelatin zymography experiments supported anti-cell invasion activity of T persicum. Interestingly, sublethal concentrations of T persicum extract induced an epithelial-like morphology in a subpopulation of cells with an increase in E-Cadherin and ${\beta}$-Catenin protein levels at the cell membrane. These results strongly suggest that T persicum is a plant with very potent anti-tumor activity.

Inhibitory effects of oroxylin A on endothelial protein C receptor shedding in vitro and in vivo

  • Ku, Sae-Kwang;Han, Min-Su;Lee, Min Young;Lee, You-Mie;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.336-341
    • /
    • 2014
  • Endothelial cell protein C receptor (EPCR) plays important roles in blood coagulation and inflammation. EPCR activity is markedly changed by ectodomain cleavage and release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-${\alpha}$ converting enzyme (TACE). Oroxylin A (OroA), a major component of Scutellaria baicalensis Georgi, is known to exhibit anti-angiogenic, antiinflammation, and anti-invasive activities. However, little is known about the effects of OroA on EPCR shedding. Data showed that OroA induced potent inhibition of phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and on cecal ligation and puncture (CLP)-induced EPCR shedding through suppression of TACE expression and activity. In addition, treatment with OroA resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of OroA as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding.

Anticancer Effects of Cisplatin in Combination with Paeonia Japonica in YD-10B Cells (YD-10B에서 Cisplatin과 백작약의 병용처리에 의한 항암 효과)

  • Kim, Eun-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.124-130
    • /
    • 2020
  • The present study investigated the anti-proliferate and anti-invasive of Phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase (MMP-2) and MMP-9 activities of combined treatment with cisplatin and ethyl acetate fractions of Paeonia japonica. Cell Proliferation was detected by the MTS assay and the activity and mRNA expression of MMP-2/-9 were examined by zymography and RT-PCR. As results, cisplatin or p. japonica treatment of YD-10B cells resulted in a dose-dependent inhibition of cell growth. Also, the viability of YD-10B cells treated with combination of 200 μM cisplatin and 50 ㎍/ml p. japonica was inhibited to 50% in compared with the cisplatin alone. In PMA-treated YD-10B cells, co-treatment of 200 μM cisplatin with 50 ㎍/ml p. japonica significantly inhibited mRNA expression and protein activation of MMP-2/-9. Therefore, This study suggest that the combination treatment of cisplatin and p. japonica potentiates a promising anti-invasive agent and has more potential anti-cancer drug for oral cancer therapy than cisplatin alone.

Berberine Hydrochloride Impact on Physiological Processes and Modulation of Twist Levels in Nasopharyngeal Carcinoma CNE-1 Cells

  • Li, Cai-Hong;Wu, Dong-Fang;Ding, Hang;Zhao, Yang;Zhou, Ke-Yuan;Xu, De-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1851-1857
    • /
    • 2014
  • Objective: The main purpose of this work was to investigate the effect of berberine hydrochloride (BH) on the proliferation, apoptosis, migration, and invasion of CNE-1 nasopharyngeal carcinoma cells. Our results shed light on the functional components of traditional Chinese herbs for potential use in modern medicine. Methods: The CNE-1 cell line was treated with different concentrations of BH and effects on cell viability and proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) assay. Anti-migratory and anti-invasive actions of BH were investigated using wound healing assays and the Millicell Hanging cell culture insert system, respectively. Expression of the epithelial-mesenchymal transition (EMT)-related gene twist (Twist) was analyzed by real-time PCR and Western blotting. Apoptosis was estimated with an annexin-V fluorescein (FITC) apoptosis detection kit, as well as with reference to levels of activated caspase-3 of CNE-1 cells before and after treatment with BH utilizing fluorescence spectroscopy. Results: BH was capable of reducing proliferation and viability of CNE-1 cells in a dose- and time-dependent manner, also demonstrating anti-migratory and anti-invasive capacities which correlated with reduction in expression of Twist. Finally, BH was able to induce significant amounts of apoptosis in CNE-1 cells, as demonstrated by an increase in the activity of caspase-3 and in annexin-V staining following treatment. Conclusion: BH extracted from rhizoma coptidis demonstrated an ability to block proliferation, induce apoptosis, and impair the migration and invasion of the CNE-1 cell line Considering these properties, our results suggest that BH could be an important compound for consideration in the treatment of nasopharyngeal carcinoma.

Purification of Enolase from Candida albicans KNIH10 Isolated in Korea and Application of Immunological Diagnosis (Candida albicans KNIH10으로부터 Enolase의 분리 및 면역진단의 응용)

  • Park, Yong-Chjun;Yoo, Jae-Il;Lee, Yeong-Seon;Shin, Jong-Hee;Kim, Bong-Su
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • We purified enolase from Candida albicans KNIH10 strain which was isolated from a clinical specimen in Korea. The purified enolase was used to detect anti-Candida antibodies in sera of patients with invasive candidiasis. For purification of enolase from the crude extract prepared by French pressure at 20,000 PSI, the fast performance liquid chromatography (FPLC) using DEAE-sepharose column was used. The elutes at $0.3{\sim}0.4\;M$ NaCl in FPLC was purified with homogenity in SDS-PAGE and its enzymatic activity was confirmed in sera of invasive candidiasis with candidemia patient by immunoblotting. The purified enolase indicated no signal (100% specificity) in 40 normal human sera and 75% (6/8) sensitivity in sera of candidemic patients with suspicious invasive candidiasis by immunoblotting.

  • PDF

Down-modulation of Bis reduces the invasive ability of glioma cells induced by TPA, through NF-κB mediated activation of MMP-9

  • Lee, Young Dae;Cui, Mei Nu;Yoon, Hye Hyeon;Kim, Hye Yun;Oh, Il-Hoan;Lee, Jeong-Hwa
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.262-267
    • /
    • 2014
  • Bcl-2 interacting cell death suppressor (Bis) has been shown to have anti-apoptotic and anti-stress functions. Recently, increased Bis expression was reported to correlate with glioma aggressiveness. Here, we investigated the effect of Bis knockdown on the acquisition of the invasive phenotype of A172 glioma cells, induced by 12-O-Tetradecanoylphorbol-3-acetate (TPA), using a Transwell assay. Bis knockdown resulted in a significant decrease in the migration and invasion of A172 cells. Furthermore, Bis knockdown notably decreased TPA-induced matrix metalloproteinase-9 (MMP-9) activity and mRNA expression, as measured by zymography and quantitative real time PCR, respectively. A luciferase reporter assay indicated that Bis suppression significantly down-regulated NF-${\kappa}B$-driven transcription. Finally, we demonstrated that the rapid phosphorylation and subsequent degradation of $I{\kappa}B-{\alpha}$ induced by TPA was remarkably delayed by Bis knockdown. These results suggest that Bis regulates the invasive ability of glioma cells elicited by TPA, by modulating NF-${\kappa}B$ activation, and subsequent induction of MMP-9 mRNA.