• Title/Summary/Keyword: Anti-inflammatory drug

Search Result 660, Processing Time 0.028 seconds

Bioactive Constituents of Marine Sponges of the Genus Spongosorites

  • Bao, Baoquan;Hong, Jongki;Lee, Chong-O.;Cho, Hee Young;Jung, Jee H.
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.144-155
    • /
    • 2006
  • This report reviews the literatures on chemical constituents of marine sponges of the genus Spongosorites and also highlights our own research. Specific biological activities of the metabolites from these sponges include: cytotoxic, antitumor, antibacterial, antifungal, antiviral, anti-inflammatory, and other pharmacological activities.

  • PDF

Anti-inflammatory and Cellular Proliferation Effects of Ethanol Extracts from 5 Kinds of Oriental Medical Plants (5종의 한약재 에탄올 추출물의 항염증 및 표피세포 증식 활성)

  • Jung, Min-Hwa
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1022-1029
    • /
    • 2018
  • This study was carried out to search for the anti-inflammatory activities of ethanol extracts obtained from 5 kinds of oriental medical plant; Pleuropterus multiflorus extract (PME), Acorus calamus L. extract (ACE), Lithospermum erythrorhizon Siebold & Zucc. extract (LEE), Xanthium strumarium L. extract (XSE), Lonicera japonica extract (LJE), which have traditionally been used as a drug in oriental medical plants in Korea. XSE showed cytotoxicity at 100, $200{\mu}g/ml$ concentration in RAW264.7 cells (p<0.05) and ACE showed cytotoxicity at $200{\mu}g/ml$ concentration in RAW264.7 cells (p<0.05). But other oriental medical plants did not showed cytotoxicity was observed in RAW264.7 cells below $200{\mu}g/ml$ concentration. These extracts at non-toxic concentrations showed anti-inflammatory effects. PME, ACE, XSE and LJE showed a concentration-dependent inhibitory effect on NO production and $PGE_2$ production in LPS-induced RAW264.7 cells. In particular, XSE showed the highest NO production inhibition ($52.9{\mu}g/ml$, $IC_{50}$) as well as the highest $PGE_2$ production inhibition at $50{\mu}g/ml$ (73.6%). ACE and LEE showed cell proliferation effects on HaCaT keratinocyte cells. Especially, LEE showed 21.1, 53.5 and 99.6% proliferative activity by incubation for 1, 3, 5days at $100{\mu}g/ml$ concentration. ACE also showed 11.2, 26.0% proliferative activity for 1day and 3days at $10{\mu}g/ml$ concentration. As a result of this study, ethanol extracts obtained from 5 kinds of oriental medical plant showed anti-inflammatory activity and HaCaT cell regeneration effect.

Anti-nociceptive and Anti-inflammatory Effects of Gami-cheongyulsaseub-tang in Arthritic Model (관절염 모델에서 가미청열사습탕(加味淸熱瀉濕湯)의 진통 및 소염 효과에 관한 연구)

  • Kim, Il-Hyun;Lee, Ha-Il;Lee, Se-Won;Kwon, Young-Mi;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.1
    • /
    • pp.27-44
    • /
    • 2015
  • Objectives This study was carried out to find the effects of Gami-cheongyulsaseub-tang (hereinafter referred to GCST) on the inhibition of zymosan-induced pain in rats and collagen II-induced arthritis (CIA) in DBA/1J mouse. Methods As an acute inflammatory pain model, peripheral inflammation was induced by intraplantar injection of zymosan into the right hind paw in rats and then the hyperalgesia and pain regulating factors in spinal cord were analyzed. As a chronic inflammation model, the mixture of collagen II and complete Freund's adjuvant was treated into mice to establish rheumatoid arthritis and then body weight, thickness of hind paw, pathological change of spleen, immunological rheumatoid factor (IgG1, IgG2a, IgG2b, IgM and anti-collagen II), pro-inflammatory cytokines, and bone injury were analyzed. Results In the acute inflammatory pain model, GCST significantly inhibited the thermal and mechanical hyperalgesia and the pain regulating factors, including Fos, CD11b, PKA and PKC, in the spinal cord with a dose-dependent manner. In the chronic rheumatoid arthritis model, GCST administration decreased arthritic index and paw edema as compared with CIA control group. In particular, GCST reduced significantly the serum levels of total IgG2a, IgG2b, IgM, and specific anti-collagen II, but not total IgG1. GCST also resulted in the attenuation of bone injury and spleen enlargement/adhesion in CIA mice. Moreover, the secretion of pro-inflammatory cytokines TNF-${\alpha}$ and IL-$1{\beta}$ in CIA mice was significantly reduced by GCST in a dose-dependent manner. Conclusions Comparison of the results in this study showed that GCST had anti-nociceptive and immunomodulatory effects. These data imply that GCST can be used as an effective drug for not only rheumatoid arthritic pain but also other auto-immune diseases.

Inhibitory Effect of Sageretia theezans against the Production of Pro-Inflammatory Mediators through the Inhibition of NF-κB and MAPK, and Activation of Nrf2/HO-1 Signaling Pathways in LPS-Stimulated RAW264.7 cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.98-98
    • /
    • 2018
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia theezans in LPS-stimulated RAW264.7 cells. ST-L and ST-B significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, COX-2, $IL-1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. ST-L and ST-B blocked LPS-induced degradation of $I{\kappa}B-{\alpha}$ and nuclear accumulation of p65, which resulted to the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. ST-L and ST-B also attenuated the phosphorylation of ERK1/2, p38 and JNK in LPS-stimulated RAW264.7 cells. In addition, ST-L and ST-B increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of ST-L and ST-B against LPS-induced NO production in RAW264.7 cells. Inhibition of p38 activation and ROS elimination attenuated HO-1 expression by ST-L and ST-B, and ROS elimination inhibited p38 activation induced by ST-L and ST-B. ST-L and ST-B dramatically induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 activation and ROS elimination. Collectively, our results suggest that ST-L and ST-B exerts potential anti-inflammatory activity by suppressing $NF-{\kappa}B$ and MAPK signaling activation, and activating HO-1 expression through the nuclear accumulation of Nrf2 via ROS-dependent p38 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-inflammatory drug to treat acute and chronic inflammatory disorders.

  • PDF

Effects of 18β-glycyrrhetinic acid on pro-inflammatory cytokines and neuronal apoptosis in the hippocampus of lipopolysaccharide-treated mice (18β-Glycyrrhetinic acid가 lipopolysaccharide에 의한 생쥐 뇌조직의 염증성 사이토카인과 해마신경세포 자연사에 미치는 영향)

  • Lee, Ji-Seung;Kwon, Man-Jae;Kweon, Su-Hyeon;Kim, Jeeho;Moon, Ji-Young;Cho, Yoon-Cheong;Shin, Jung-Won;Lee, Jong-Soo;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Objectives : $18{\beta}$-Glycyrrhetinic acid (18betaGA) is an metabolite of glycyrrhizin in Glycyrrhiza (licorice). The present study investigated anti-inflammatory and anti-apoptosis effect of 18betaGA on the brain tissue of lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : 18betaGA was administered orally with low (30 mg/kg) and high (100 mg/kg) doses for 3 days prior to LPS (3 mg/kg) injection. Pro-inflammatory cytokines mRNA including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and inflammatory enzyme cyclooxygenase-2 (COX-2) mRNA were measured in the cerebral cortex, hippocampus, and hypothalamus tissue using real-time polymerase chain reaction at 24 h after the LPS injection. Histological changes of Cornu ammonis area 1 (CA1) neurons, Bax, Bcl-2, and caspase-3 expression in the hippocampus was also evaluated by immunohistochemistry and Western blotting method. Results : 18betaGA significantly attenuated the up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 mRNA, and COX-2 mRNA expression in the brain tissues induced by the LPS injection. 18betaGA also significantly attenuated the reductions of the thickness of CA1 and the number of CA1 neurons. The up-regulation of Bax protein expression in the hippocampal tissue by the LPS injection was significantly attenuated, while the ratio of Bcl-2/Bax expression was increased by 18betaGA treatment. 18betaGA also significantly attenuated the up-regulation of Bax and caspase-3 expression in the CA1 of the hippocampus. Conclusion : This results indicate that 18betaGA has anti-inflammatory and anti-apoptosis effect under neuroinflammation induced by the LPS injection and suggest that 18betaGA may be a beneficial drug for various brain diseases accompanied with the brain tissue inflammation.

Reducing Veterinary Drug Residues in Animal Products: A Review

  • Rana, Md Shohel;Lee, Seung Yun;Kang, Hae Jin;Hur, Sun Jin
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.687-703
    • /
    • 2019
  • A survey we conducted suggests that the ingestion of veterinary drug residues in edible animal parts constitutes a potential health hazard for its consumers, including, specifically, the possibility of developing multidrug resistance, carcinogenicity, and disruption of intestinal normal microflora. The survey results indicated that antibiotics, parasitic drugs, anticoccidial, or nonsteroidal anti-inflammatory drugs (NSAIDs) are broadly used, and this use in livestock is associated with the appearance of residues in various animal products such as milk, meat, and eggs. We observed that different cooking procedures, heating temperatures, storage times, fermentation, and pH have the potential to decrease drug residues in animal products. Several studies have reported the use of thermal treatments and sterilization to decrease the quantity of antibiotics such as tetracycline, oxytetracycline, macrolides, and sulfonamides, in animal products. Fermentation treatments also decreased levels of penicillin and pesticides such as dimethoate, malathion, Dichlorodiphenyldichloroethylene, and lindane. pH, known to influence decreases in cloxacillin and oxacillin levels, reportedly enhanced the dissolution of antimicrobial drug residues. Pressure cooking also reduced aldrin, dieldrin, and endosulfan in animal products. Therefore, this review provides updated information on the control of drug residues in animal products, which is of significance to veterinarians, livestock producers, and consumer health.

A Case Report of Gamiseungmagalgeun-tang for a Cutaneous Adverse Drug Reaction in a Patient with Intracerebral Hemorrhage (뇌출혈 환자의 피부약물 유해반응에 대한 가미승마갈근탕 치험 1례)

  • Eun-joo Seok;Junghwa Hong;Youngju Rhee;Jae-hyuk You;Jin-young Lee;Dong-jun Choi
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.2
    • /
    • pp.278-286
    • /
    • 2024
  • A cutaneous adverse drug reaction (CADR) refers to an unexpected skin and mucosal reaction caused by drug administration. In the present case, a 65-year-old male presented with generalized itching and a maculopapular rash after taking Western medication, including anticonvulsants and a nonsteroidal anti-inflammatory drug (NSAID). He was treated with Gamiseungmagalgeun-tang, a traditional Korean herbal medicine. After treatment, the patient's symptoms improved, without recurrence. Based on this experience, traditional Korean herbal medicine, including Gamiseungmagalgeun-tang, may be beneficial for improving symptoms of CADRs.

Bioactive effects of a Herbal Formula KDC16-2 Consisting Portulaca oleracea L. Extracts (마치현 추출물 함유 제제 KDC16-2의 생리 활성 효과)

  • Hur, Gayeong;Lee, Soyoung;Kim, Yeon-Yong;Jang, Hyun-Jae;Lee, Seung-Jae;Lee, Seung Woong;Choi, Jung Ho;Rho, Mun-Chual
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • Portulaca oleracea L. (PL) has been used in traditional medicine herb for treatment of various diseases, such as diarrhea, dysentery, and skin inflammation. Previous studies have shown that the PL regulates the inflammation by inhibition of pro-inflammatory cytokines. Although PL might have improvement effects of intestinal function and bioactive effects, there are not enough studies to demonstrate. This study investigated the effects of KDC16-2 on the improvement of intestinal function and anti-inflammatory effects in vivo and in vitro. The improvement effect of intestinal function was measured fecal amount, water content and intestinal transit rate in KDC16-2 treated ICR mice. As results, compared with the control group, the KDC16-2 group showed a significant increase in wet fecal weight, dry fecal weight and fecal water content. The intestinal transit rate of KDC16-2 group was significantly increased. Based on the results, KDC16-2 is considered to have effects on improving intestinal function. The effect of anti-inflammatory demonstrated by using dextran sulfate sodium (DSS)-induced colitis mice. The mice were administered 3% DSS along with KDC16-2 (100, 300 mg/kg) for 14 days. DSS-induced colitis mice were significantly ameliorated in KDC16-2 treated group, including body weight loss, colon length shortening, tight junction protein of colon and histological colon injury. The levels of inflammatory mediators (IgG2a, IgA, C-reactive protein and Myeloperoxidase) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$, Interleukin (IL)-6) which are involved in inflammatory responses were increased in the DSS-treated group as compared to those in the control group, and the levels were significantly decreased in the KDC16-2 groups. In addition, we investigated the impact of KDC16-2 on lipopolysaccharide (LPS)-induced inflammatory responses in J774A.1 cells. KDC16-2 inhibited production of prostaglandin E2 (PGE2) and reactive oxygen species (ROS). These results suggested that the KDC16-2 could effectively alleviate the dysfunction of intestinal and inflammatory mediators. Thus, these KDC16-2 can be potentially used as health functional food of intestinal.

Shikonin ameliorates salivary gland damage and inflammation in a mouse model of Sjögren's syndrome by modulating MAPK signaling pathway

  • Wenjing Guo;Xin Wang;Chao Sun;Jian Wang;Tao Wang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2023
  • Sjögren syndrome (SS) is a systemic inflammatory autoimmune disease that involves exocrine glands. Shikonin is extracted from comfrey, which is conventionally used as an anti-tumor, antibacterial, and antiviral drug in China. However, the application of Shikonin in SS remains unreported. This study aimed to verify the potential functions of Shikonin in SS progression. Firstly, non-obese diabetic mice were used as the SS mouse model, with C57BL/6 mice serving as the healthy control. It was demonstrated that the salivary gland damage and inflammation were aggravated in the SS mouse model. Shikonin improved salivary gland function decline and injury in the SS mouse model. Moreover, Shikonin reduced inflammatory cytokines and immune infiltration in the SS mouse model. Further experiments discovered that Shikonin attenuated the MAPK signaling pathway in the SS mouse model. Lastly, inhibition of the MAPK signaling pathway combined with Shikonin treatment further alleviated the symptoms of SS. In conclusion, Shikonin ameliorated salivary gland damage and inflammation in a mouse model of SS by modulating the MAPK signaling pathway. Our findings indicate that Shikonin may be a useful drug for SS treatment.

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF