DOI QR코드

DOI QR Code

Anti-inflammatory and Cellular Proliferation Effects of Ethanol Extracts from 5 Kinds of Oriental Medical Plants

5종의 한약재 에탄올 추출물의 항염증 및 표피세포 증식 활성

  • 정민화 (대동대학교 헤어디자인과)
  • Received : 2018.06.25
  • Accepted : 2018.09.19
  • Published : 2018.09.30

Abstract

This study was carried out to search for the anti-inflammatory activities of ethanol extracts obtained from 5 kinds of oriental medical plant; Pleuropterus multiflorus extract (PME), Acorus calamus L. extract (ACE), Lithospermum erythrorhizon Siebold & Zucc. extract (LEE), Xanthium strumarium L. extract (XSE), Lonicera japonica extract (LJE), which have traditionally been used as a drug in oriental medical plants in Korea. XSE showed cytotoxicity at 100, $200{\mu}g/ml$ concentration in RAW264.7 cells (p<0.05) and ACE showed cytotoxicity at $200{\mu}g/ml$ concentration in RAW264.7 cells (p<0.05). But other oriental medical plants did not showed cytotoxicity was observed in RAW264.7 cells below $200{\mu}g/ml$ concentration. These extracts at non-toxic concentrations showed anti-inflammatory effects. PME, ACE, XSE and LJE showed a concentration-dependent inhibitory effect on NO production and $PGE_2$ production in LPS-induced RAW264.7 cells. In particular, XSE showed the highest NO production inhibition ($52.9{\mu}g/ml$, $IC_{50}$) as well as the highest $PGE_2$ production inhibition at $50{\mu}g/ml$ (73.6%). ACE and LEE showed cell proliferation effects on HaCaT keratinocyte cells. Especially, LEE showed 21.1, 53.5 and 99.6% proliferative activity by incubation for 1, 3, 5days at $100{\mu}g/ml$ concentration. ACE also showed 11.2, 26.0% proliferative activity for 1day and 3days at $10{\mu}g/ml$ concentration. As a result of this study, ethanol extracts obtained from 5 kinds of oriental medical plant showed anti-inflammatory activity and HaCaT cell regeneration effect.

이 연구는 한국에서 전통적으로 사용되어 온 5종의 한약재인 하수오(Pleuropterus multiflorus), 창포(Acorus calamus L.), 지치(Lithospermum erythrorhizon Siebold & Zucc.), 창이자(Xanthium strumarium L.), 인동초(Lonicera japonica) 에탄올 추출물의 항염증에 미치는 효과를 탐색하였다. 창이자는 RAW264.7 세포에 100, $200{\mu}g/ml$ 농도에서 세포 독성을 나타냈고(p<0.05), 창포는 RAW264.7 세포에 $200{\mu}g/ml$ 농도에서 세포 독성을 나타냈다(p<0.05). 다른 한약재들은 RAW264.7 세포에 $200{\mu}g/ml$ 농도 이하에서 세포 독성이 나타나지 않았다. 독성이 없는 농도에서 5종의 한약재 추출물들의 항염증 효과를 확인하였다. 하수오, 창포, 창이자, 인동초는 LPS 유도된 RAW264.7세포에서 NO 생산과 $PGE_2$생산에 대해 농도 의존적으로 억제 효과를 보였다. 특히, 창이자는 $52.9{\mu}g/ml$ ($IC_{50}$)로 가장 뛰어난 NO 생성 저해효과를 나타냈을 뿐만 아니라 $50{\mu}g/ml$ 농도 구간에서 가장 뛰어난 $PGE_2$ 생성 저해능을 나타냈다(73.6%). 창포와 지치는 HaCaT 세포에 대하여 세포가 증식하는 효과를 나타냈다. 특히 지치는 $100{\mu}g/ml$ 농도구간에서 1, 3, 5일 배양 시 21.1, 53.5, 99.6%의 증식능을 보였다. 창포 또한 $10{\mu}g/ml$ 농도구간에서 1, 3일 배양 시 11.2, 26.0%의 증식능을 보였다. 따라서 본 연구를 통해 5종의 한약재 에탄올 추출물의 항염증 활성 및 HaCaT 세포 재생에 미치는 효과를 확인하였다.

Keywords

References

  1. Aktan, F. 2003. iNOS-mediated nitric oxide production and its regulation. J. Life Sci. 75, 639-653.
  2. Ames, B. N., Shienaga, M. K. and Hagen, T. M. 1993. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 90, 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  3. Beissert, S., Cavazzana, I., Mascia, F., Meroni, P., Pastore, S., Tessari, G. and Girolomoni, G. 2006. Mechanisms of immune-mediated skin diseases: an overview. Clin. Exp. Rheumatol. 24, S1-6.
  4. Cho, E. K., Song, H. J., Cho, H. E., Choi, I. S. and Choi, Y. J. 2010. Development of functional beverage (Sanya) from fermented medicinal plants and evaluation of its physiological activities. J. Life Sci. 20, 82-89. https://doi.org/10.5352/JLS.2010.20.1.082
  5. Chung, B. S. and Shin, M. K. 1990. Encylopedia of local medical hurbs. pp. 278-279, Younglim Press, Seoul, Korea.
  6. Fujiwara, N. and Kobayashi, K. 2005. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 281-286. https://doi.org/10.2174/1568010054022024
  7. Funk, C. D. 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875. https://doi.org/10.1126/science.294.5548.1871
  8. Giercksky, K. E. 2001. COX-2 inhibition and prevention of cancer. Best Pract. Res. Clin. Gastroenterol. 15, 821-833. https://doi.org/10.1053/bega.2001.0237
  9. Gracie, J. A., Forsey, R. J., Chan, W. L., Gilmour, A., Leung, B. P., Greer, M. R., Kennedy, K., Carter, R., Wei, X. Q., Xu, D., Field, M. Foulis, A., Liew, F. Y. and McInnes, I. B. 1999. A proinflammatory role for IL-18 in rheumatoid arthritis. J. Clin. Invest. 104, 1393-1401. https://doi.org/10.1172/JCI7317
  10. Grisham, M. B., Jourd'Heuil, D. and Wink, D. A. 1999. Nitric Oxide I. Physiological chemistry of nitric oxide and its metabolites : implications in inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 276, G315. https://doi.org/10.1152/ajpgi.1999.276.2.G315
  11. Gu, Y. R. and Hong, J. H. 2017. Physicochemical characteristics and physiological activities of mixture extracts from Liriope platyphylla, Schizandra chinensis, and Panax ginseng C.A. Meyer. Kor. Soci. Food Pre. 24, 431-439. https://doi.org/10.11002/kjfp.2017.24.3.431
  12. Hatano, T., Uebayashi, H., Ito, H., Shiota, S., Tsuchiya, T. and Yoshida, T. 1999. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. 47, 1121-1128. https://doi.org/10.1248/cpb.47.1121
  13. Hur, S., Lee, Y. S., Yoo, H., Yang, J. H. and Kim, T. Y. 2010. Homoisoflavanone inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-kappaB nuclear localization. J. Dermatol. Sci. 59, 163-169. https://doi.org/10.1016/j.jdermsci.2010.07.001
  14. Ishida, H., Ray, R. and Ray, P. 2008. Sulfur mustard downregulates iNOS expression to inhibit wound healing in a human keratinocyte model. J. Dermatol. Sci. 49, 207-216. https://doi.org/10.1016/j.jdermsci.2007.09.002
  15. Jeon, S. B. Jeon, J. A. and Jeong, B. G. 2010. Anti-oxidative activities and tyrosinase inhibition ability of rice bran ethanol extract. J. Kor. Soc. Cosm. 16, 602-606.
  16. Kang, H. H. 1997. Anti-aging in cosmetics. J. Cosmet. Sci. 23, 57-61.
  17. Kean, W. F. and Buchanan, W. W. 2005. The use of NSAIDs in rheumatic disorders 2005: a global perspective. Inflammopharmacology 13, 343-370. https://doi.org/10.1163/156856005774415565
  18. Kim, C. M., Shin, M. K., Lee, K. S. and Ahn, D. K. 1998. Dictionary of Chinese pharmacy. pp. 78-79, Joungdam publisher, Seoul, Korea.
  19. Kim, H. M., Yi, J. M. and Lim, K. S. 1999 Magnoliae flos inhibits mast cell-dependent immediate-type allergic reactions. Pharmacol. Res. 39, 107-111. https://doi.org/10.1006/phrs.1998.0414
  20. Kinne, R. W., Brauer, R., Stuhlmuller, B., Palombo-Kinne, E. and Burmester, G. R. 2000. Macrophages in rheumatoid arthritis. Arthritis Res. Ther. 2, 189-202. https://doi.org/10.1186/ar86
  21. Kolodsick, J. E., Peters-Golden, M., Larios, J., Toews, G. B., Thannickal, V. J. and Moore, B. B. 2003. Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am. J. Respir. Cell Mol. Biol. 29, 537-544. https://doi.org/10.1165/rcmb.2002-0243OC
  22. Kundu, J. K. and Surh, Y. J. 2005. Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals. Mutat. Res. 591, 123-146. https://doi.org/10.1016/j.mrfmmm.2005.04.019
  23. Lee, E., Choi, M. K., Lee, Y. J., Ku, J. L., Kim, K. H., Choi, J. S. and Lim, S. J. 2006. ${\alpha}$-Tocopheryl succinate, in contrast to ${\alpha}$-tocopherol and ${\alpha}$-tocopheryl acetate, inhibits prostaglandin E2 production in human lung epithelial cells. Carcinogenesis 27, 2308-2315. https://doi.org/10.1093/carcin/bgl073
  24. Lee, K. S., Ahn, D. K., Shin, M. K. and Kim, C. M. 1998. The encyclopedia of oriental herbal medicine. pp. 4657-4663, Jungdam Pubishing Co., Seoul, Korea.
  25. Lee, Y. G. and Cho, J. Y. 2007. Inhibitory effect of curcumin on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells and its suppressive mechanism. Hanguk Yakyong Changmul Hakhoe Chi 15, 451-456.
  26. Min, J. Y. and Park, Y. K. 2009. Effect of dipsaci radix water extract on LPS-induced inflammatory response in RAW 264.7 mouse macrophages. Kor. J. Herbology 24, 189.
  27. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  28. Oh, H., S. and Kim, J. H. Physiological functionalities of hot water extract of Codonopsis lanceolata and some medicinal materials, and their mixtures. Kor. J. Comm. Living Sci. 18, 407-415
  29. Paul, A., Cuenda, A., Bryant, C. E., Murray, J., Chilvers, E. R., Cohen, P., Gould, G. W. and Plevin, R. 1999. Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide-mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW 264.7 macrophages. Cell. Signal. 11, 491-497. https://doi.org/10.1016/S0898-6568(99)00018-2
  30. Roth, R. A., Harkema, J. R., Pestka, J. P. and Ganey, P. E. 1997. Is exposure to bacterial endotoxin a determinant of susceptibility to intoxication from xenobiotic agents?. Toxicol. Appl. Pharmacol. 147, 300-311. https://doi.org/10.1006/taap.1997.8301
  31. Schafer, L. and Kragballe, K. 1991. Abnormalities in epidermal lipid metabolism in patients with atopic dermatitis. J. Invest. Dermatol. 96, 10-15. https://doi.org/10.1111/1523-1747.ep12514648
  32. Shao, L. X. 2003. Effects of the extract from bergamot and boxthorn on the delay of skin aging and hair growth in mice. Zhongguo Zhong Yao Za Zhi 28, 766-772.
  33. Shen, T., Lee, Y. J. and Cho, J. Y. 2008. Effect of hot water extract from Scutellaria barbata on the macrophages activated by lipopolysaccharide. Hanguk Yakyong Changmul Hakhoe Chi 16, 313-319.
  34. Sirsjo, A., Karlsson, M., Gidof, A., Rollman, O. and Torma, H. 1996. Increased expression of inducible nitric oxide synthase in psoriatic skin and cytokine-stimulated cultured keratinocytes. Br. J. Dermatol. 134, 643-648. https://doi.org/10.1111/j.1365-2133.1996.tb06963.x
  35. Son, K. H., Park, J. O., Chung, K. C., Chang, H. W., Kim, H. P., Kim, J. S. and Kang, S. S. 1992. Flavonoids from the aerial parts of Lonicera japonica. Arch. Pharm. Res. 15, 365-370. https://doi.org/10.1007/BF02974114
  36. Son, K. H., Kim, J. S., Kang, S. S., Kim, H. P. and Chang, H. W. 1994. Isolation of flavonoids from Lonicera japonica. Kor. J. Pharmacogn. 25, 24-27.
  37. Tabata, M., Tsukada, M. and Fukui, H. 1987. Antimicrobial activity of quinone derivatives from Echium lysopsis callus cultures. Planta Med. 44, 234-236.
  38. Taga, M. S., Miller, E. E. and Pratt, D. E. 1984. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 61, 928-993. https://doi.org/10.1007/BF02542169
  39. Yoon, K. B. and Chang, J. L. 1989. Useful plants in good health. pp. 129, Seok-O Publishers, Seoul, Korea.
  40. Yun, J. Y., Choi, S. Y., Park, P. J., Chung, H. G., Shin, H. M., Suk, K. H. and Lim, B. O. 2008. Extract of Artemisia princeps Pampanini inhibit lipopolysaccharide-induced nitric oxide, cyclooxygenase-2, prostaglandin E2, and tumor necrosis factor-a production from murine macrophages RAW 264.7 cells. Hanguk Yakyong Changmul Hakhoe Chi 16, 326-331.