• 제목/요약/키워드: Anti-cancer compound

검색결과 250건 처리시간 0.032초

Inhibitory Effect of 4-Aryl 2-Substituted Aniline-thiazole Analogs on Growth of Human Prostate Cancer LNCap Cells

  • Baek, Seung-Hwa;Kim, Nak-Jeong;Kim, Seong-Hwan;Park, Kwang-Hwa;Jeong, Kyung-Chae;Park, Bae-Keun;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.111-114
    • /
    • 2012
  • Androgen receptor (AR) is ligand-inducible nuclear hormone receptor which has been focused on key molecular target in growth and progression of prostate cancer. We synthesized a series of 4-aryl 2-substituted aniline-thiazole analogs and evaluated their anti-cancer activity in AR-dependent human prostate cancer LNCap cells. Among them, the compound 6 inhibited the tumor growth in LNCap-inoculated xenograft model.

Induction of cell cycle arrest and apoptosis by an indirubin analog, a CDK inhibitor, in human lung cancer cells

  • Lee, Jong-Won;Moon, Myung-Ju;Kim, Yong-Chul;Lee, Sang-Kook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.91.2-91.2
    • /
    • 2003
  • Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation. Inhibition of CDK is a promising target in development of anti-cancer agents. An indirubin analog (AGM01l), a CDK inhibitor, is a synthetic compound that inhibits human cancer cell growth in vitro. AGM01l showed a potent cytotoxicity in cultured human cancer cell lines (IC$\sub$50/ = 5.43 ${\mu}$M for A549, human colon cancer cell; IC$\sub$50/ = 1.21 ${\mu}$M for SNU-638, human stomach cancer cell; IC$\sub$50/ 9.23 ${\mu}$M for HL-60, human leukemia cell). (omitted)

  • PDF

Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma

  • Rath, Sonali;Jagadeb, Manaswini;Bhuyan, Ruchi
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.46.1-46.11
    • /
    • 2021
  • Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski's Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein's active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.

적포도의 주 항산화물질, 레스베라트롤의 항암작용: 아폽토시스 의한 인체 암세포 사멸 유도 (Anticarcinogenic Activity of Resveratrol, a Major Antioxidant Presnet in Red Wine : Induction of Apoptosis in Human Cancer Cells)

  • 허연진;김정환;서효정;공구;서영준
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 1999
  • Resveratrol (3,5,4'-trihydroxy-trans-stilbene) has been considered to be as one of major antioxidants present in grapes responsible for beneficial effects of red wine consumption on coronary heart disease. This triphenolic stilbene has been suggested as a potential cancer chemopreventive agent based on its striking inhiitory effects on diverse cellular events associated with tumor initiation, promotion, and progression. The compound has strong antioxidative and anti-inflammatory activities which amy contribute to its chemopreventive/chemoprotective properties. In the present work, we have found that resveratrol reduces viability and DNA synthesis capability of cultured human promyelocytic leukemia (HL-60) cells. Likewise, the viability of human breast cancer cell line, MCF-7 was reduced by resveratrol treatment. The growth inhibitory and antiproliferative properties of resveratrol appear to be associated with its induction of apoptotic cell death as determined by morphological and ultrastructural changes, agarose gel electrphoretic analysis of internucleosomal DNA fragmentation, and in situ terminal end-labeling of fragmented DNA (TUNEL). This compound also inhibited the phorbol ester-induced expression of cyclooxygenase-2 (COX-2) protein in immortalized human mammary epithelial MCF-10A cells. These results suggest that resveratrol has the promising cancer therapeutic/chemopreventive potential.

인동초로 배양한 표고버섯 균사체 추출물의 항암 및 알레르기 억제효과 검증 (Effect of Mycelia Extracts from Lentinus edodes Mushroom-Cultured Lonicera japonica Thunberg on Anticancer and Antiallergy Activities)

  • 배만종;예은주
    • 한국식품영양과학회지
    • /
    • 제36권4호
    • /
    • pp.424-430
    • /
    • 2007
  • 인동초를 이용하여 표고균사체를 접종, 배양하여 얻어진 인동초균사체 추출액의 간암세포, 유방암세포, 자궁경부암세포 그리고 고형암의 증식에 미치는 영향을 조사하였다. 3가지 암세포의 형태변화 및 증식 억제에 미치는 영향에서 간암세포와 유방암세포에서 암세포에 대한 특이적 형태변화가 관찰되었고, 특히 간암세포에서 인동초균사체 추출물이 인동초추출물보다 효과적인 것으로 나타났다. 인동초균사체를 간암세포에 3mg/mL로 처리했을 때 $85.60{\pm}4.66%$의 암세포 증식억제율을 나타내어 인동초를 처리한 것보다 암세포 증식 억제율이 61.10% 높았다. 유방암세포에서는 인동초 및 인동초균사체를 처리한 것 모두 높은 암세포 증식억제율을 보였으며, 두 군간의 차이는 미미한 것으로 나타났다. 자궁경부암세포에서는 인동초 및 인동초균사체를 처리한 것 모두 암세포 증식억제율이 미미한 것으로 나타났다. 고형암 억제효과에서는 대조군에 비해 인동초균사체 추출물에서 고형암이 61% 억제되었으며, 인동초균사체가 인동초추출물보다 고형암 억제효과가 30% 더 높은 것으로 나타났다. 히스타민 유리 억제효과를 측정한 결과 compound 48/80처리군에 비해 인동초추출물은 9.07%, 인동초균사체 추출물은 43.05%의 히스타민 분비 억제효과가 있는 것으로 나타났다.

Platycodin D Induces Apoptosis, and Inhibits Adhesion, Migration and Invasion in HepG2 Hepatocellular Carcinoma Cells

  • Li, Ting;Xu, Wen-Shan;Wu, Guo-Sheng;Chen, Xiu-Ping;Wang, Yi-Tao;Lu, Jin-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1745-1749
    • /
    • 2014
  • Background: Platycodin D (PD), a triterpenoid saponin isolated from the Chinese medicinal herb Platycodonis radix, possesses anti-cancer effects in several cancer cell lines. The aim of this study was to evaluate its anticancer activities in hepatocellular carcinoma cells. Materials and Methods: MTT and colony formation assays were performed to evaluate cell proliferation, along with flow cytometry and Western blotting for apoptosis. Cell adhesion was tested by observing cellular morphology under a microscope, while the transwell assay was employed to investigate the cell migration and invasion. Results: PD concentration-dependently inhibited cell proliferation in both HepG2 and Hep3B cells, and significantly suppressed colony formation and induced apoptosis in HepG2 cells. The protein levels of cleaved poly ADP-ribose polymerase (PARP) and Bax were up-regulated while that of survivin was down-regulated after treatment with PD. Moreover, PD not only obviously suppressed the adhesion of HepG2 cells to Matrigel, but also remarkably depressed their migration and invasion induced by 12-O-tetradecanoylphorbol 13-acetate (TPA). Conclusions: PD presents anti-cancer potential in hepatocellular carcinoma cells via inducing apoptosis, and inhibiting cell adhesion, migration and invasion, indicating promising features as a lead compound for anti-cancer agent development.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

Study on the Protein Binding of Anti-cancer Agent, 2"-O-benzoylcinnamaldehyde, using Ultrafilteration and Flurescence Spectrometry

  • Ren , Shan;Kim, Dae-Duk;Lee, Chi-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.242.3-243
    • /
    • 2003
  • The compound of 2"-O-benzoylcinnamaldehyde(CB-ph) is a derivative of 2"-hydroxycinnamaldehyde whcih is a methanol extract of cinnamomum cassia blume. It"s a new anti-cancer agent which has been showed to inhibit the growth of various tumor cells in vitro and in vivo. In order to investigate the effective drug concentration and bio-distribution of CB-ph, the plasma protein binding was studied. In this study, the degree of the binding of Cb-ph to various serum proteins, the binding parameters, the binding site of CB-ph in human serum albumin, and the effect of some extensive protein-binding drugs on the protein binding of CB-ph in human serum ablumin were investigated respectively by ultrafilteration and fluorescence spectrometry. (omitted)

  • PDF

Anti-Proliferative and Anti-Carcinogenic Enzyme-inducing Activities of Delphinidin in Hepatoma Cells

  • Jang, Chan-Ho;Lee, In-Ae;Lim, Hyun-Ae;Kim, Ju-Ryoung;Ha, Young-Ran;Yu, Hoon;Sung, Mi-Kyung;Kim, Jong-Sang
    • Food Science and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.641-645
    • /
    • 2007
  • Delphinidin, an aglycone form of anthocyanins, was demonstrated to have anti-carcinogenic potential. The compound at $50\;{\mu}g/mL$ caused a significant increase of quinone reductase activity, an anti-carcinogenic marker enzyme, in mouse hepatoma cell lines (Hepa1c1c7 and BPRc1). Delphinidin enhanced the expression of other detoxifying or antioxidant enzymes including glutathione s-transferase, gamma-glutamylcysteine synthetase, heme oxygenase 1, and glutathione reductase. It suppressed the proliferation of murine hepatoma cells in a dose-dependent manner, with approximately $IC_{50}$ of $70\;{\mu}g/mL$. These results suggest that delphinidin might be useful for cancer prevention.

Induction of caspase-dependent apoptosis in melanoma cells by the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea

  • Kim, Ji-Hae;Jang, Young-Oh;Kim, Beom-Tae;Hwang, Ki-Jun;Lee, Jeong-Chae
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.806-811
    • /
    • 2009
  • Recently, various phenolic acid phenethyl ureas (PAPUs) have been synthesized from phenolic acids by Curtius rearrangement for the development of more effective anti-oxidants. In this study, we examined the anti-tumor activity and cellular mechanism of the synthetic compound (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea (PAPU1) using melanoma B16/F10 and M-3 cells. Results showed that PAPU1 inhibited the cell proliferation and viability, but did not induce cytotoxic effects on primary cultured fibroblasts. PAPU1 induced apoptotic cell death rather than necrosis in melanoma cells, a result clearly proven by the shift of cells into sub-$G_1$ phase of the cell cycle and by the substantial increase in cells positively stained with TUNEL or Annexin V. Collectively, this study revealed that PAPU1 induced apoptosis in a caspase-dependent manner, suggesting a potential role as a cancer chemopreventive agent for melanoma cells.