• Title/Summary/Keyword: Anti-bacterial substances

Search Result 25, Processing Time 0.03 seconds

The Physical Methods for Induction of Anti-Bacterial Substances in the Silkworm Larva, Bombyx mori

  • Gui, Zhongzheng;Dai, Jianyi;Zhuang, Dahuan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.231-233
    • /
    • 2003
  • To understand the physical method for induction of anti-bacterial substances from the silkworm larvae, Bombyx mori, three physical methods, i.e., infrared radiation, ultraviolet radiation and ultrasonic wave, have been used in this study. The results have shown that ultrasonic wave can induce anti-bacterial sub-stances effectively than radiations in the B. mori larva. The induction of anti-bacterial substances was different from silkworm race to race. Summer-autumn silkworm race (Qiufeng${\times}$Baiyu) was easy to induce antibacterial substances. It is suggested that the ultrasonic wave is a simple and easy method for induction.

Physiologically Functional Foods (기능성 식품에 관하여)

  • 이종임
    • Culinary science and hospitality research
    • /
    • v.5 no.2
    • /
    • pp.401-418
    • /
    • 1999
  • Many plants and animal have long been known to have medicinal effects and therefore have been used as medicines. There are many substances that show various pharmacologic efficacy such as anti-tumor efficacy, anti-inflammatory efficacy, cholesterol-lowering efficacy, anti-coagulant of blood efficacy and anti-bacterial efficacy. I summarized the recent advances in research on physiologically functional foods. The pharmacological efficacy of dietary fiber, chitin & chitosan, DHA(docosahexaenoic acid), mushroom, alginic acid and herbs have selected as topices for discussion. I was examining the anti-coagulant activity of herbs, I discovered that Eugenia caryophyllata T. (clove) had a relatively high anti-coagulant activity.

  • PDF

Selection of Acid-tolerant and Hetero-fermentative Lactic Acid Bacteria Producing Non-proteinaceous Anti-bacterial Substances for Kimchi Fermentation (비단백질성 항균물질을 생산하는 김치발효용 내산성 Hetero 발효형 유산균주 선발)

  • Kim, Hye-Rim;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.119-127
    • /
    • 2013
  • Twenty-three strains of Leuconostoc species and 45 strains of Weissella species inhibiting the growth of Lactobacillus sakei, one of the most populous lactic acid bacteria in over-ripened kimchi, were isolated from kimchi in our previous study. Among these hetero-fermentative 68 strains, Leuconostoc mesenteroides CK0128, Weissella cibaria CK0633, and W. cibaria KK0797 exhibited a relatively high survival rate in MRS medium, which was adjusted to pH 4.3 using an acid mixture consisting of acetic and lactic acids, and produced a large amount of exopolysaccharides. The culture supernatants of 3 strains were fractionated by a molecular weight cutter and lyophilized. The fractions with a molecular weight smaller than 3,000 Da showed antagonistic activity against Staphylococcus aureus and Lb. sakei. The anti-bacterial substances were very stable to heat treatments ($121^{\circ}C$, 15 min) and active at acidic conditions below pH 5. ${\alpha}$-Amylase, lipase, and proteolytic enzymes (proteinase K and pepsin) did not affect their activities. These non-proteinaceous anti-bacterial substances inhibited the growth of several food pathogens.

Isolation of a Desmutagenic Substance Producing Microorganisms (항변이원성 물질을 생성하는 미생물의 분리방법)

  • 박용일;조문구;정호권
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.110-113
    • /
    • 1992
  • In the screening process of anti- or desmutagenic substance from the various microbial metabolites with the method of Ames and Rec-assay, a desmutagenic substance producing bacterial strain which inactivates the mitomycin C-induced mutagenicity was isolated and identified as Psudomonas sp. AM-10.

  • PDF

A preliminary evaluation on mixed probiotics as an antimicrobial spraying agent in growing pig barn

  • Shanmugam, Sureshkumar;Jae Hong, Park;In Ho, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1035-1045
    • /
    • 2022
  • The purpose of this study is to examine whether spraying an anti-microbial agent into the slurry pit will reduce the noxious odor substances from piggery barns. For this, a total of 200 crossbred ([Landrace × Yorkshire] × Duroc) growing pigs with an initial average body weight (BW) of 23.58 ± 1.47 kg were selected and housed in two different rooms, i.e. control (CON) and treatment (TRT). Each room has 100 pigs (60 gilts and 40 borrows). For a period of 42 days, all pigs were fed with corn-soybean meal-based basal diet. Later the noxious odor substances were measured by the following methods. First, fecal samples were randomly collected and stored in sealed and unsealed containers, and sprayed with the non-anti-microbial agent (NAMA) (saline water) and multi-bacterial spraying (MBS) agent (200 :1, mixing ratio-fecal sample : probiotic), Second, the slurry pit of CON and TRT rooms were directly sprayed with NAMA and MBS, respectively. The fecal sample that was stored in sealed and un-sealed containers and sprayed with MBS significantly reduced NH3 and CO2 concentration at the end of day 7. However, at the end of day 42, the fecal sample showed a lower H2S, methyl mercaptans, acetic acid, and CO2 concentration compared to the unsealed container. Moreover, at the end of days 7, 14, 21, 28, 35, and 42 compared to the CON room and TRT room slurry pit emits lower concentrations of NH3, acetic acid, H2S, and methyl mercaptans, and CO2 into the atmosphere. Based on the current findings, we infer that spraying anti-microbial agents on pig dung would be one of the better approaches to suppress the odor emission from the barn in the future.

The Anti-inflammatory Effect of Green Tea Extract Against Prevotella intermedia (녹차추출물의 잇몸 질환 원인균에 대한 항염증 효능 연구)

  • Min, Dae-Jin;Yi, Sung-Won;Lee, Sung-Hoon;Kim, Seung-Seob;Kim, Chan-Ho;Lee, John-Hwan;Bae, Ji-Hyun;Kim, Han-Kon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • Dental bacteria can cause gum diseases, i.e. gingivitis and periodontitis, by inducing inflammation in human gingiva. Therefore, the most effective way to prevent and treat gum diseases is the control of the inflammatory reactions induced by dental bacteria. Almost all present dental care products contain anti-bacterial agents to eliminate dental bacteria. However, recent studies report that even heat-killed dental bacteria can induce the inflammation responses in oral cells. Therefore, the method using anti-bacterial agents should be improved for better anti-inflammatory effect and the effective natural anti-inflammatory substances need to be found. In addition, the mechanisms of gingival inflammation should be elucidated. In this study, we tried to find out the mechanism of the gingival inflammation and effective natural anti-inflammatory substances with human gingival epithelial cells and Prevotella intermedia which is well known as a typical dental bacteria inducing gingivitis and periodontitis. In results, Prevotell intermedia initiated the gingival inflammation response by stimulating gingival epithelial cells to release an inflammatory cytokine, IL-8. Furthermore, the inflammation by Prevotella intermedia is related to COX-2, AP-1, and TNF-${\alpha}$ pathways. Green tea extract could effectively suppress the inflammatory responses induced by Prevotella intermedia. We find out the effective natural substance for the improvement of gum diseases by studying the mechanism of the gingival inflammation induced by dental bacteria.

Functional Agents to Replace Antibiotics for Friendly Environment Pig Diets (환경친화형 양돈사료를 위한 항생제 대체 기능성 물질)

  • 홍의철;김인호
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.4
    • /
    • pp.135-148
    • /
    • 2001
  • Antibiotics supplementation in animal feeds results in bacterial resistance to the antibiotics and residue of the antibiotics in animal products, which can cause serious problems in human health. Therefore, the finding of new substances replacing antibiotics are needed. New substances are egg york antibody, probiotics, organic acid, mannanoligosaccharide(MOS), fructooligosaccharide(FOS), and chitosan etc. Egg york antibody is antibody to obtain from egg york of the chicken injected the specific antigen. Probiotics can prevent the problems of residue of the antibiotics and resistance to the antibiotics. Organic acids ctrl preservation of colostrum inhibit the rottenness and increase the beneficial bacteria. MOS and FOS increase the beneficial bacteria, too. Chitosan is used the immune material to active the anti-bacteria.

  • PDF

Isolation of Antimicrobial Active Substances from Chinese Gall Nut (Schlechtendalia chinensis) against Watermelon Fruit Rot Pathogens (Acidovorax avenae subsp. Citrulli) (오배자(Schlechtendalia chinensis)로부터 수박 과실썩음병 병원균(Acidovorax avenae subsp. citrulli)에 대한 항균 활성물질 탐색)

  • Kim, Hyun-Woo;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.323-334
    • /
    • 2015
  • This study was conducted to develop environment-friendly agricultural products with anti-microbial activity against Acidovorax avenae subsp. citrulli as a pathogen of bacterial fruit blotch in cucurbit. Schlechtendalia chinensis was extracted by MeOH and solvent fraction. The hexane fraction, which showed highest value of anti-microbial activity, was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to MS database of Wiley library. As a result, myristic acid, palmitic acid and 3-n-pentadecylphenol were identified as maine compounds showing antimicrobial activity against A. avenae subsp. citrulli. Bioassay using commercial myristic acid, palmitic acid and 3-n-pentadecylphenol to test for the anti-microbial activity conformed the anti-microbial activity of potential active compounds, and myristic acid and 3-n-pentadecylphenol showed strong activity. In conclusion, myristic acid and 3-n-pentadecylphenol identified from S. chinensis were anti-microbial chemicals.

Anti-bacterial effects of lavender and peppermint oils on Streptococcus mutans (Streptococcus mutans 대한 Lavender와 Peppermint Oil의 항균효과)

  • Park, Chung Mu;Yoon, Hyun Seo
    • Journal of Korean Academy of Oral Health
    • /
    • v.42 no.4
    • /
    • pp.210-215
    • /
    • 2018
  • Objectives: The main objectives of this study were to verify the antibacterial activity of two essential oils, lavender and peppermint, against dental caries and to review their synergistic effect when used in combination. Our results provide basic data for the evaluation of the use of these two substances towards the prevention and cure of dental caries. Methods: The sample solutions of lavender and peppermint oils were prepared in three different concentrations (30%, 50%, and 70% (v/v)) by diluting them with third-distilled water and Tween 20. Streptococcus mutans was selected as the bacterial species for testing. The disk diffusion method was used to measure the antibacterial activity of the sample solutions. For generating growth curves and measuring the number of clusters of the bacterial, the liquid medium-dilution method was used; the absorbance of the medium was measured at 600 nm after 3, 6, 12 and 24 hours. Results: When the antibacterial activity of the oils was tested via the disk diffusion method, the activity improved with increasing concentrations of all the sample solutions of peppermint, lavender, and the blend, but there was no significant difference between them with respect to the type of oil. In the growth curves of S. mutans, growth inhibition was observed after 12 hours. The inhibitory effect of 30% lavender oil on growth was 64.9% and 80.1% after 12 and 24 hours of treatment, respectively whereas that of peppermint oil was 71.3% and 80.1% after 12 and 24 hours of treatment, respectively. The inhibitory effect of the blended oil was 71.9% and 81.0% after 12 and 24 hours of treatment, respectively. Conclusions: Further research is still required in order to determine the efficacy of lavender and peppermint oils, as well as other essential oils, for wider use in preventing dental caries.

Bacterial Quorum Sensing and Quorum Quenching for the Inhibition of Biofilm Formation (박테리아의 Quorum Sensing 및 생물막 형성 억제를 위한 Quorum Quenching 연구 동향)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • Quorum sensing (QS) is a cell-to-cell communication system, which is used by many bacteria to regulate diverse gene expression in response to changes in population density. Bacteria recognize the differences in cell density by sensing the concentration of signal molecules such as N-acyl-homoserine lactones (AHL) and autoinducer-2 (AI-2). In particular, QS plays a key role in biofilm formation, which is a specific bacterial group behavior. Biofilms are dense aggregates of packed microbial communities that grow on surfaces, and are embedded in a self-produced matrix of extracellular polymeric substances (EPS). QS regulates biofilm dispersal as well as the production of EPS. In some bacteria, biofilm formations are regulated by c-di-GMP-mediated signaling as well as QS, thus the two signaling systems are mutually connected. Biofilms are one of the major virulence factors in pathogenic bacteria. In addition, they cause numerous problems in industrial fields, such as the biofouling of pipes, tanks and membrane bioreactors (MBR). Therefore, the interference of QS, referred to as quorum quenching (QQ) has received a great deal of attention. To inhibit biofilm formation, several strategies to disrupt bacterial QS have been reported, and many enzymes which can degrade or modify the signal molecule AHL have been studied. QQ enzymes, such as AHL-lactonase, AHL-acylase, and oxidoreductases may offer great potential for the effective control of biofilm formation and membrane biofouling in the future. This review describes the process of bacterial QS, biofilm formation, and the close relationship between them. Finally, QQ enzymes and their applications for the reduction of biofouling are also discussed.