• Title/Summary/Keyword: Anti-asthmatic agents

Search Result 7, Processing Time 0.023 seconds

Anti-asthmatic agents of Gastrodia elata Rhizoma MeOH extracts

  • Jang, Yong-Un;Suh, Mu-Hyun;Lee, Ji-Yun;Sim, Sang-Soo;Whang, Wan-Kyun;Kim, Chang-Jong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.299.2-299.2
    • /
    • 2002
  • For the activity-guided separation on anti-asthmatic action from 4 fractions as n-hexane (yield. 0.09%), EtOAc (0.48%), BuOH (3.0%) and H2O (5.17%) fractions from MeOH extract (11.64%) of powdered Gastrodia elata Rhizoma (GER), some biological active agents were isolated by column chromatography (column, silica gel: elution solvent. CHCl3 : MeOH) according to the method of Junko Hayashi et. al. and Heihachiro Taguchi et. al. (omitted)

  • PDF

Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model

  • Mo, Yosep;Kang, Sung-Yoon;Bang, Ji-Young;Kim, Yujin;Jeong, Jiung;Jeong, Eui-Man;Kim, Hye Young;Cho, Sang-Heon;Kang, Hye-Ryun
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.833-845
    • /
    • 2022
  • Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti-asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.

Effects of Anti-Asthma Agents on Cytokine and Prostaglandin Production in Ovalbumin-Sensitized Splenocytes

  • Won, Tae-Joon;Lee, Chan-Woo;Kwon, Seok-Joong;Lee, Do-Ik;Park, So-Young;Hwang, Kwang-Woo
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.388-394
    • /
    • 2009
  • The cytokines which is produced by allergen-specific T helper (Th) cells play a pivotal role in the pathogenesis of asthma. Asthma is caused by exaggerated T-helper 2 (Th2)-based immune responses. It is suggested that controlling such Th2-based response is necessary for asthma therapy. The current therapies for asthma focus primarily on control of symptoms and suppression of inflammation, without affecting the underlying cause. So, we examined that anti-asthmatic drugs might have play a certain role in Th2/Th1 balance. Splenocytes isolated from ovalbumin (OVA)-sensitized mice cultured with anti-asthmatic drugs. It is well known that Th2 and Th1 immune responses can balance one another, as Th2 mediators suppress Th1 responses and Th1 mediators similarly inhibit Th2 responses. But salmeterol inhibits both of Th1 and Th2 mediators, which salmeterol is a suppressor of immune responses not only a suppressor of Th2-based immune responses. Aminophylline is a weak suppressor of immune responses. But ipratropium and cromoglycate don't have any suppressor effect to Th2-driven responses. They only have suppressor effect to Th1 immune responses. Salmeterol, ipratropium, aminophylline, and cromoglycate augmented mRNA levels of CRTH2, EP2, and IP2 receptors in OVA-sensitized splenocytes. It is well known that the up-regulation of CRTH2 - $PGD_2$ receptor - results in restraint of eosinophil recruitment and that the increment of IP and EP2 - $PGI_2$ and $PGE_2$ receptor, respectively - may induce the accumulation of cAMP that decrease the effector function of T cells. Moreover salmeterol and cromoglycate increase the mRNA expression of $PGD_2$ synthase. These findings indicate that anti-asthma agents may alleviate the immunological responses that cause the asthmatic diseases.

Short-acting β2-agonist prescriptions in patients with asthma: findings from the South Korean cohort of SABINA III

  • Kwang-Ha Yoo;Sang-Ha Kim;Sang-Heon Kim;Ji-Yong Moon;Heung-Woo Park;Yoon-Seok Chang;Maarten J.H.I Beekman
    • The Korean journal of internal medicine
    • /
    • v.39 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • Background/Aims: Despite short-acting β2-agonist (SABA) overuse being associated with poor asthma outcomes, data on SABA use in South Korea is scarce. Herein, we describe prescription patterns of SABA and other asthma medications in patients from the South Korean cohort of the SABA use IN Asthma (SABINA) III study. Methods: This study included patients with asthma aged ≥ 12 years, who had ≥ 3 consultations with the same healthcare provider, and medical records containing data for ≥ 12 months prior to the study visit. Patients were classified by investigator-defined asthma severity (per 2017 Global Initiative for Asthma recommendations) and practice type (primary or specialist care). Data on disease characteristics, asthma treatments, and clinical outcomes in the 12 months before the study visit were collected using electronic case report forms. Results: Data from 476 patients (mean age, 55.4 years; female, 63.0%) were analyzed. Most patients were treated by specialists (83.7%) and had moderate-to-severe asthma (91.0%). Overall, 7.6% of patients were prescribed ≥ 3 SABA canisters (defined as over-prescription). In patients prescribed SABA in addition to maintenance therapy, 47.4% were over-prescribed SABA. Most patients (95.4%) were prescribed a fixed-dose combination of an inhaled corticosteroid and a long-acting β2-agonist as maintenance therapy. Although asthma was well-controlled/partly-controlled in 91.6% of patients, 29.6% experienced ≥ 1 severe asthma exacerbation. Conclusions: SABA over-prescription was reported in nearly 50% of patients prescribed SABA in addition to maintenance therapy, underscoring the need to align clinical practices with the latest evidence-based recommendations and educate physicians and patients on appropriate SABA use.

Inhibitory Effect of Disosium Cromoglycate and Ketotifen on Human Seminal Plasma-Induced Mast Cell Activation (Disodium Kromoglycate와 Ketotifen의 사람정장 유도 비만세포 활성화 억제작용)

  • Chai, Ok Hee
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.176-183
    • /
    • 2004
  • Background: Human seminal plasma (HSP)-induced hypersensitivity is one of the serious complications with sexual intercourse. The clinical manifestations of HSP-induced hypersensitivity may be related to the release of vasoactive mediators from mast cell induced by HSP. It has recently been reported that HSP modulates immune systems and induces mast cell degranulation and histamine release from rat peritoneal mast cells (RPMC). Ketotifen and disodium cromoglycate (DSCG), anti-asthmatic and anti-allergic drugs, have a role of mast cell stabilization and inhibit mast cell-induced leukocyte rolling and adhesion. But the inhibitory agents of HSP-induced mast cell activation are unknown. This study was performed to investigate the effects of DSCG and ketotifen on the HSP-induced mast cell activation. Methods: For this, influences of DSCG and ketotifen on the human seminal plasma-induced degranulation, histamine release and morphological changes of RPMC were observed. Results: The mast cell degranulation and histamine release of RPMC by HSP were induced in a dose-dependent fashion. The HSP-induced cytomorphological changes such as swelling, intracellular vacoules, and interrupted cell boundary were significantly inhibited by pretreatment with DSCG or ketotifen. DSCG and Ketotifen inhibited the HSP-induced degranulation and histamine release from RPMC. Conclusion: From the above results, it is suggested that DSCG and ketotifen have a inhibitory effect of the HSP-induced mast cell activation. DSCG and ketotifen may be used for treatment of HSP-induced hypersensitivity.

Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma

  • Qi, Peng;Wei, Chunhua;Kou, Dianbo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.555-564
    • /
    • 2021
  • We investigated the effects of naringenin and morin on IL-5 and ROS production in PMA+ionomycin-treated EL-4 cells with the corroboration of their antioxidant and anti-inflammatory properties using an asthma-induced mouse model. The EL-4 cell line was used to study the outcomes of naringenin or morin, followed by cell viability studies. Western blot analysis and ELISA test were used to determine Th2 mediated cytokines. In vivo studies were carried out on BALB/c mice to induce allergic asthma using ovalbumin administered intraperitoneally. Intracellular ROS was determined using 2',7'-dichlorodihydrofluorescein diacetate, followed by serum enzymatic (AST and ALT) estimations and inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and lung tissues. Histopathological studies were conducted to examine lung tissue-stained architecture. Our findings suggested that naringenin and morin significantly suppressed IL-5 and ROS production via various pathways. Interestingly, by reducing NFAT activity, naringenin and morin stimulated HO-1 expression, thereby suppressing IL-5 secretion due to regulating the transcription factor Nrf2 via P13/Akt or ERK/JNK signalling pathways in EL-4 cells, demonstrating the involvement of HO-1 expression in inhibiting asthmatic inflammation. The increased inflammatory cells in the BALF were substantially decreased by both naringenin and morin, followed by inhibition in the elevated Th-2 cytokines levels. The TNF-α protein levels in an allergic asthma mouse model were significantly reduced by suppressing Akt phosphorylation and eosinophil formation. Recent findings confirmed that naringenin and morin possess the potential to control asthma-related immune responses through antioxidant and anti-inflammatory properties, indicating potential therapeutic agents or functional foods.

Suppressive Effects of Gamisojaganggi-tang on Immunopathogenesis in OVA-induced Asthma Model (가미소자기탕(加味蘇子氣湯)이 천식 유발 병태 모델에서 분자 및 조직병리학적 변화에 미치는 영향)

  • An, Hwang-Yong;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1159-1165
    • /
    • 2006
  • This study was done to investigate the effects of Gamisojaganggi-tang(GSGT) on immunopathologic changes in OVA-induced asthma model of mice. Pathologic indicators associated with this immune disease, which include cytokines, the number of immune-cells, immunoglobin E (IgE), were examined, and histological changes of bronchial tissues were also examined. The administration of GSGT significantly reduced the lung weight compared with control mice of OVA-induced asthma model. The administration of GSGT significantly reduced the number of total cells in BALF compared with control mice of OVA-induced asthma model. The administration of GSGT significantly reduced the number of eosinophil in BALF compared with control mice of OVA-induced asthma model. The administration of GSGT insignificantly increased the number of monocyte in BALF compared with control mice of OVA-induced asthma model. The administration of GSGT significantly reduced the number of lymphocyte in BAL compared with control mice of OVA-induced asthma model. The administration of GSGT significantly reduced the gene expression of eotaxin in lung tissue compared with control mice of OVA-induced asthma model. The administration of GSGT insignificantly reduced the IL-4 and IL-5 production in BALF compared with control mice of OVA-induced asthma model. The administration of GSGT insignificantly reduced the levels of total IgE and ovalbumin-specific IgE in BALF. The administration of GSGT significantly reduced the levels of ovalbumin-specific IgE whereas the serum levels of total IgE were insignificantly reduced compared with control mice of OVA-induced asthma model. The administration of GSGT moderately reduced bronchial alveolar narrowing, bronchiovascular edema and increase in the size of alveolar space, which shown in control mice of OVA-induced asthma model, in a dose dependent manner. Furthermore, GSGT reduced invasion of inflammatory cells, and proliferation of smooth muscle cells in bronchial tissue. These results suggested that GSGT has suppressive effects on pathologic changes associated with disease progression in asthma through the modulation of immune system. GSGT has potential to use as an anti-asthmatic agents.