• 제목/요약/키워드: Anti-apoptotic/pro-apoptotic proteins

검색결과 105건 처리시간 0.023초

Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

  • Ahn, Joung Hoon;Kim, Min Hye;Kwon, Hyung Joo;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.43-50
    • /
    • 2013
  • Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial ${\beta}$-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apop-totic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min;Pae, Hyun-Ock;Jang, Seon-Il;Kim, Young-Myeong;Chung, Hun-Taeg
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.116-126
    • /
    • 2002
  • Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.

E3 ubiquitin ligases and deubiquitinases as modulators of TRAIL-mediated extrinsic apoptotic signaling pathway

  • Woo, Seon Min;Kwon, Taeg Kyu
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.119-126
    • /
    • 2019
  • The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) initiates the extrinsic apoptotic pathway through formation of the death-inducing signaling complex (DISC), followed by activation of effector caspases. TRAIL receptors are composed of death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and osteoprotegerin. Among them, only DRs activate apoptotic signaling by TRAIL. Since the levels of DR expressions are higher in cancer cells than in normal cells, TRAIL selectively activates apoptotic signaling pathway in cancer cells. However, multiple mechanisms, including down-regulation of DR expression and pro-apoptotic proteins, and up-regulation of anti-apoptotic proteins, make cancer cells TRAIL-resistant. Therefore, many researchers have investigated strategies to overcome TRAIL resistance. In this review, we focus on protein regulation in relation to extrinsic apoptotic signaling pathways via ubiquitination. The ubiquitin proteasome system (UPS) is an important process in control of protein degradation and stabilization, and regulates proliferation and apoptosis in cancer cells. The level of ubiquitination of proteins is determined by the balance of E3 ubiquitin ligases and deubiquitinases (DUBs), which determine protein stability. Regulation of the UPS may be an attractive target for enhancement of TRAIL-induced apoptosis. Our review provides insight to increasing sensitivity to TRAIL-mediated apoptosis through control of post-translational protein expression.

Melittin Inhibits Human Prostate Cancer Cell Growth through Induction of Apoptotic Cell Death

  • Park Hye-Ji;Lee Yong-Kyung;Song Ho-Seub;Kim Goon-Joung;Son Dong-Ju;Lee Jae-Woong;Hong Jin-Tae
    • Toxicological Research
    • /
    • 제22권1호
    • /
    • pp.31-37
    • /
    • 2006
  • It was previously found that melittin inhibited $NF-{\kappa}B$ activity by reacting with signal molecules of $NF-{\kappa}B$ which is critical contributor in cancer cell growth by induction of apoptotic cell death. We here investigated whether melittin inhibits cell growth of human prostate cancer cells through induction of apoptotic cell death, and the possible signal pathways. Melittin ($0{\sim}1\;{\mu}g/ml$) inhibited prostate cancer cell growth in a dose dependent manner. Conversely related to the growth inhibitory effect, melittin increased the induction of apoptotic cell death in a dose dependent manner. Melittin also inhibited DNA binding activity of $NF-{\kappa}B$, an anti-apoptotic transcriptional factor. Consistent with the induction of apoptotic cell death and inhibition of $NF-{\kappa}B$, melittin increased the expression of pro-apoptotic proteins caspase-3, and Bax but down-regulated anti-apoptotic protein Bcl-2. These findings suggest that melittin could inhibit prostate cancer cell growth, and this effect may be related with the induction of apoptotic cell death via inactivation of $NF-{\kappa}B$.

T24 인체방광암 세포에서 pachymic acid에 의한 apoptosis 유발 (Induction of Apoptosis by Pachymic Acid in T24 Human Bladder Cancer Cells)

  • 정진우;백준영;김광동;최영현;이재동
    • 생명과학회지
    • /
    • 제25권1호
    • /
    • pp.93-100
    • /
    • 2015
  • Pachymic acid는 복령에서 분리된 lanostane-type인 triterpenoid의 일종이다. 최근 pachymic acid가 항암 및 항염증 효능과 산화적 스트레스에 대한 항산화 효능 등과 같은 약리적인 효능이 있는 것으로 밝혀지고 있으나, 그에 대한 구체적인 분자생물학적 기전 연구는 매우 미비한 실정이다. 본 연구에서는 pachymic acid의 항암활성 및 관련 기전 조사의 일환으로 T24 인체 방광암세포 모델을 이용하여 pachymic acid에 의한 apoptosis 유발 여부를 검증하였다. 본 연구의 결과에 의하면 pachymic acid는 T24 세포의 증식을 유의적으로 억제시켰으며, 이는 apoptosis 유발과 연관성이 있음을 다양한 방법으로 확인하였다. Pachymic acid에 의한 apoptosis 유도에는 pro-apoptotic 인자들의 발현 증가와 anti-apoptotic 유전자 산물들의 발현 감소가 동반되었으며, MMP의 소실과 tBid의 발현 증가가 관찰되었다. 아울러 pachymic acid는 extrinsic 및 intrinsic apoptosis 경로의 개시에 관여하는 caspase-8 및 -9의 활성뿐 만 아니라, caspase-3의 활성도 증가시킴으로서 PARP와 같은 기질 단백질의 단편화를 초래하였다. 따라서 pachymic acid는 항암활성을 지니는 천연생리활성 물질로서의 잠재력이 매우 높음을 알 수 있었다.

사포닌 변환에 의한 맞춤형 인삼제품개발 (Development of Consumer demand Ginseng Products Using Saponin Modification Techniques)

  • 양덕춘;최광태
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2012년도 정기총회 및 춘계학술발표회
    • /
    • pp.8-8
    • /
    • 2012
  • Ginseng have been traditionally used for strengthening immunity, providing nutrition and recovering health from fatigue. Recently, pharmaceutical activities of ginseng roots have been proven by many researches, and ginseng has become a world-famous medicinal plant. Ginseng saponin, ginsenoside, is one of the most important secondary metabolite in ginseng which has various pharmacological activities. Many studies have aimed to convert major ginsenosides to the more active minor ginsenoside Rg3 for consumer demand ginseng product. Microbial strain GS514 strain was isolated from soil around ginseng roots for enzymatic preparation of ginsenoside Rg3, which strain shows strong ability of converting ginsenoside Rb1and Rd into Rg3 in the solution with NaCl. The gene encoding a ${\beta}$-glucosidase from this GS514 was cloned and expressed in the BL21 (DE3) strain of Escherichia coli. The recombinant enzyme was purified and characterized. The molecular mass of purified was 87.5 kDa, as determined by SDS-PAGE. The gene sequence revealed significant homology to the family 3 glycoside hydrolases. The purified single enzyme also catalyzed the conversion of ginsenoside Rb1 into Rg3. This target enzyme will be able to produce as much saponin for consumer demand ginseng product. Anti-apoptotic proteins bind with pro-apoptotic proteins to induce apoptosis mechanism. Over expression of these anti-apoptotic proteins lead to several cancers by preventing apoptosis. Docking simulations were performed for anti-apoptotic proteins with several ginsenosides from Panax ginseng. Our finding shows ginsenosides particularly Rg3, Rh2 and Rf have more binding affinity with apoptotic proteins. Further, these docking system of each ginsenosides can be extended to experimental screen system for further brief confirmations of several diseases.

  • PDF

신경아세포종에 대한 팔보회춘탕(八寶廻春湯)의 항암 효과 (Anti-cancer Effects of Palbohoichoon-tang on Neuroblastoma Cells)

  • 안정환;조문영;우찬;신용진;신선호
    • 대한한방내과학회지
    • /
    • 제35권1호
    • /
    • pp.79-91
    • /
    • 2014
  • Objectives : To investigate the anti-cancer effect of Palbohoichoon-tang (PBHCT) extracts. Methods : The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MMT) assay and cell morphological changes were microscopically analyzed after staining with $10{\mu}M$ 2-[4-amidinophenyl]-6-indolecarbamidine dihydrochloride (DAPI) and TUNEL. We also analyzed expression of Bcl2, $Bcl_{xL}$, Bax, procaspase-3, procaspase-9, and procyclic acidic repetitive protein (PARP) by western blot method. Results : Observations showed that PBHCT induced the apoptotic cell death proved by increased sub-G1 phase cell population, apoptotic body formation and chromatin condensation. Western blot analysis of total cell lysates revealed that the PBHCT induced cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP). In addition, PBHCT dose-dependently increased the activity of caspase-9, caspase-3 and PARP-1. Furthermore, PBHCT reduced anti-apoptotic Bcl2, $Bcl_{xL}$ expression which contributed to the loss of mitochondrial membrane potential and the activations of caspase-9 and caspase-3. Conclusions : These findings suggest that PBHCT exerts anti-cancer effects on human neuroblastoma SH-SY5Y cells by inducing apoptotic death via down-regulation of anti-apoptotic proteins such as Bcl2 and $Bcl_{xL}$, up-regulation of pro-apoptotic proteins such as Bax, and activation of caspase cascades and PARP-1.

TRAIL and Bortezomib: Killing Cancer with Two Stones

  • Qureshi, Muhammad Zahid;Romero, Mirna Azalea;Attar, Rukset;Javed, Zeeshan;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1671-1674
    • /
    • 2015
  • Cancer genomics and proteomics have undergone considerable broadening in the past decades and increasingly it is being realized that solid/liquid phase microarrays and high-throughput resequencing have provided platforms to improve our existing knowledge of determinants of cancer development, progression and survival. Loss of apoptosis is a widely and deeply studied process and different approaches are being used to restore apoptosis in resistant cancer phenotype. Modulating the balance between pro-apoptotic and anti-apoptotic proteins is essential to induce apoptosis. It is becoming more understood that pharmacological inhibition of the proteasome might prove to be an effective option in improving TRAIL induced apoptosis in cancer cells. Keeping in view rapidly accumulating evidence of carcinogenesis, metastasis, resistance against wide ranging therapeutics and loss of apoptosis, better knowledge regarding tumor suppressors, oncogenes, pro-apoptotic and anti-apotptic proteins will be helpful in translating the findings from benchtop to bedside.

Requirement of Reactive Oxygen Species Generation in Apoptosis of MCF-7 Human Breast Carcinoma Cells Induced by Sanguinarine

  • Lim, Ji-Young;Lee, Yae-Lim;Lee, Hae-Rin;Choi, Woo-Young;Lee, Won-Ho;Choi, Yung-Hyun
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.215-221
    • /
    • 2007
  • Although sanguinarine, a benzophenanthridine alkaloid, possesses anti-cancer properties against several cancer cell lines, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. In order to further explore the critical events leading to apoptosis in sanguinarine-treated MCF-7 human breast carcinoma cells, the following effects of sanguinarine on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 family proteins. We show that sanguinarine-induced apoptosis is accompanied by the generation of intracellular ROS and disruption of MMP as well as an increase in pro-apoptotic Bax expression and a decrease of anti-apoptotic Bcl-2 and Bcl-xL expression. The quenching of ROS generation with N-acetyl-L-cysteine, the ROS scavenger, protected the sanguinarine-elicited ROS generation, mitochondrial dysfunction, modulation of Bcl-2 family proteins, and apoptosis. Based on these results, we propose that the cellular ROS generation plays a pivotal role in the initiation of sanguinarine-triggered apoptotic death.

Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy

  • Bisan El Dakkak;Jalal Taneera;Waseem El-Huneidi;Eman Abu-Gharbieh;Rifat Hamoudi;Mohammad H. Semreen;Nelson C. Soares;Eman Y. Abu-Rish;Mahmoud Y. Alkawareek;Alaaldin M. Alkilany;Yasser Bustanji
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.267-280
    • /
    • 2024
  • Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.