• 제목/요약/키워드: Anti-Vibration System

Search Result 131, Processing Time 0.126 seconds

A Sea-Trial Test of a Pendulum-type Mass Driving Anti-Rolling System for Small Ships (소형 선박용 진자식 횡동요 저감장치의 실선시험)

  • 문석준;박찬일;정종안;김병인;윤현규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.438-441
    • /
    • 2004
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MD-ARS) might be one candidate of several systems against the ship's rolling. In this paper, a sea-trial test on a pendulum-type MD-ARS passively operated is carried out in Suyoung, Busan. After the system is installed on the cabin of the small leisure boat, a series of test is conducted before and after operating the system. Through the test, it is confirmed that the roll rate of the ship is pretty well reduced by the system.

  • PDF

The Operation and Vibration Characteristics of Tail-fan Performance Test System (테일홴 성능시험장치의 운용과 진동특성)

  • Song, Keun-Woong;Kim, Jun-Ho;Kang, Hee-Jung;Rhee, Wook;Sim, Joung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.421-428
    • /
    • 2005
  • This paper described operation and vibration characteristics of a 'tail-fan' anti-torque performance test system. KARI (Korea Aerospace Research Institute) developed a 'tail-fan' anti-torque system of a helicopter and a performance test-rig to test the performance of the tail-fan. The performance test-rig consists of driving, supporting and rotating parts. In the process of the performance test, firstly, operation test of the test-rig were carried out to verify design specifications. Secondly, natural frequencies of fan blade and test-rig were measured respectively. Lastly, to find the operation rotating speed for the performance test, vibration test were carried out using accelerometers on tail gear box. The performance test conditions of the tail-fan to avoid a resonance were found from the fan-plot and vibration test results. The tail-fan performance tests were well done safely.

Measurement of Grip and Feed Force in the Evaluation of Hand-arm Vibration (수완계 진동 평가에 영향을 미치는 작용력의 측정)

  • 최석현;장한기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1038-1042
    • /
    • 2003
  • In order to evaluate dynamic impedance of a hand-arm system it is necessary to measure the hand-transmitted vibration and the reaction force at the same time while gripping the vibrating handle. In the study a device was developed to measure both the vibration and the force. The device consists of a measurement handle with four strain gauge and two accelerometers and a PC based control system with a program for the signal processing and evaluation of the hand-transmitted vibration and reaction force. The handle was installed on the vibration shaker so that it can move by the generated signal from the control system. As an application of the system dynamic reaction force and the frequency weighted acceleration at the handle attached to the shaker were measured at various grip force and feed force. This system will be very useful in the area of impedance measurement and the evaluation of performance of anti-vibration gloves.

  • PDF

Experiment and Analysis for the Horizontal Vibration Control of Access Floor on Reinforced Concrete Structures (철근 콘크리트 구조물의 Access Floor 수평진동 제어를 위한 실험 및 해석)

  • 변근주;김문겸;송하원;이호범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1997
  • This paper is on the vibration control of access floor on the frames of reinforced structure. In this study, the horizontal anti-vibration system using precise spring damper was developed and modeling and vibration analysis of the RC structure was performed for the control of horizontal vibration coused by machinery and worker's moving. Experiment was done in three cases, no damper at the RC structures, dampers connecting pedestal to pedestal and pedestal to the structure, for the investigation of the effect of the system on disigned RC structure. For each experiment, the occeleration responses on slab and access floor after giving impact wave and external vibration were measured. It was shown that the magnitude of resonance response of the system with dampers are smaller than without damper and the resonance peak also partly moved to low-frequency range. Furthermore. It was shown that the acceleration components of the system with domoers decreased greatly in high-frequency range and the system was very much effective especially for external vibration. In order to verify the anti-vibration effect of the developed system, the vibration analysis was also done for the system by using the finite element modelling. The analysis results was in good agreement with experimental results. Thus, It is concluded that this study is useful for the design of precise anti-vibration system and micro-vibration control of concrete structures.

  • PDF

Vibration Compensation due to Spindle Unbalance using An Electro Magnetic Exciter (전자기 가진기를 이용한 스핀들 불평형 진동 보상)

  • 안재삼;김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.505-509
    • /
    • 2001
  • When the spindle is rotated for machining the workpiece, the vibration is generated due to the spindle unbalance. This vibration affects surface finish, dimensional accuracy, tool life, and spindle bearings. To compensate this effect of the spindle unbalance, the spindle system using an EME(electro magnetic exciter)is proposed in this paper. In the proposed spindle system, the vibration due to the spindle unbalance is monitored using vibration sensors and is compensated by electromagnetic attractive forces generated in the EME which are excited by anti-direction forces corresponded with the measured unbalance. Firstly, the spindle system using an EME and control system are constructed to compensate the effect of spindle unbalance in this paper. And then the system is modeled by bond graph to analyze the system. Finally, a controller for vibration compensation due to spindle unbalance is designed and is implemented in real experimental system. As a result, experimental results show this proposed spindle system is very effective to compensate the spindle unbalance.

  • PDF

Vibration Isolation System for Driver's Seats with Negative Stiffness (운전자용 의자의 부강성 진동 절연 시스템)

  • Park, Sung-Tae;Lee, Sang-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2010
  • As a vehicle speed increases, more vibration energy is transmitted from chassis to a driver. Current isolation system for the driver's seat by damping control can reduce the transmitted vibration energy near resonance area. But in higher frequency region than natural frequency multiplied by $\sqrt{2}$, the vibration energy transmitted to the driver has a tendency to be increased. Therefore, the method by natural frequency reduction of the system is preferred to increase the effectiveness of the anti-vibration. However, the natural frequency could not be freely reduced due to the nature of the isolation system structure. A new passive suspension system to reduce the natural frequency is proposed. The theoretical analysis and experimental results show better vibration attenuation compared with the current isolation system.

The Operation and Vibration Characteristics of Tail-Fan Performance Test System (테일팬 성능시험장치의 운용과 진동특성)

  • Song, Ken-Woong;Kim, Jun-Ho;Kang, Hee-Jung;Rhee, Wook;Sim, Jung-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.508-512
    • /
    • 2004
  • This paper described operation and vibration characteristics of 'Tail-Fan' performance test system. KARI(Korea Aerospace Research Institute) developed 'Tail-Fan' system as a kind of helicopter anti-torque system(ATS) and designed ATS performance test-rig for Tail-Fan system performance test. Test-rig consists of driving parts, supporting parts and rotating parts. For Tail-Fan system performance tests, firstly, test-rig operation tests were carried out for verification of design specifications. Secondly, natural frequencies of fan blade and test-rig were measured respectively. Lastly, to find the operation rotating speed for performance tests, vibration tests using accelerometers on tail gear box(TGB) were carried out. Through the fanplot and vibration test results, Tail-Fan performance test conditions to avoid a resonance were found and performance tests were well done safely.

  • PDF

Vibration Estimation of Synchrotron Light Source Building Using Experimental Modal Analysis (실험적 모드해석을 이용한 방사광 가속기 건물의 진동평가)

  • 박상규;이홍기;권형오
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.413-421
    • /
    • 1995
  • Synchrotron light source building of the accelerator has stringent vibration limits since the performance of the optical devices and electronic equipments in the laboratory is strongly influenced by the vibrations of the building. In this study, vibrations of the synchrotron light source building are estimated using experimental modal analysis and force response simulation technique. Dynamic properties of the building are identified from the modal parameters and vibration responses are predicted from the force response simulation. A double anti vibration system is designed and applied to the HVAC equipments and it has been shown that the measured vibrations of the building with the double anti vibration system satisfy the vibration criteria.

  • PDF