• Title/Summary/Keyword: Anti-Skid Control

Search Result 15, Processing Time 0.027 seconds

Anti-skid Control System Analysis of a Tilting Train (틸팅차량의 활주방지 제어시스템 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Kim, Min-Soo;Goo, Byeong-Choon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • The presence of low adhesion at the wheel-rail contact point can result in skid of train wheels, and the skid, in turn, results in flats appearing on the wheels. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents dynamic modeling of a tilting train and the brake system of the tilting train, and analyzes the anti-skid logic used in the tilting train. The validity of the analysis is demonstrated via simulation study using Simulink for skid and re-adhesion circumstances of the tilting train.

Design an Anti-Skid System using Fuzzy Model-Based Controller (퍼지 모델 기반 제어기를 이용한 안티 스키드 시스템의 설계)

  • Lee, Sung-Ho;Kim, Young-Guk;Kim, Seog-Won;Park, Jin-Bae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1276-1281
    • /
    • 2006
  • In general, the wheel-skid prevention of braking system is very important in modern railway applications. This is because wheel-skid can lead to an increase in noise and vibration from wheels with flat points, as well as an increased braking distance. However conventional anti-skid control has problems because wheel adhension and skid characteristics are very difficult nonlinear systems and time consuming to accurately model. In this paper, we design a fuzzy controller using a model of relation between ahdension and braking force, we show that anti-skid fuzzy controller has a very good performance, performing better than the previous conventional controller.

  • PDF

Development of Brake System with ABS Function for Aircraft

  • Jeon, Jeong-Woo;Woo, Gui-Aee;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, it is to development of brake system with ABS function for aircraft. The test of brake system is required before applying on aircraft. The real-time dynamic simulator with 5-D.O.F. aircraft dynamic model is developed for braking performance test of ABS (Anti-skid Brake System) control h/w with anti-skid brake functions. The dynamic simulator is real-time interface system that is composed of dynamic simulation parts, master control parts, digital and analog in/out interface parts, and user interface parts. The 5-D.O.F. aircraft dynamic model is composed of a big contour and a little contour by simulation s/w. The big contour represents the interactions of forces in airframe, nose and main landing gear, and engines on the center of gravity. The little contour represents interactions of wheel, braking units, hydraulic units and a control unit. ABS control h/w unit with ABS control algorithm is also developed and is tested with simulator under the some conditions of gripping coefficient. We have known that ABS control h/w unit on wet or snowy runway as well as dry runway very well protects wheel skid.

  • PDF

Study on Experimental Equipment for Anti-Skid Control Logic Test (활주방지로직 시험장치에 대한 연구)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.85-90
    • /
    • 2011
  • To maintain the safety and efficiency of railroad vehicles, it is important to understand the working of the brake system with anti-skid control unit (ASCU) for rolling stocks. In this paper, a HILS (Hardware In-the Loop Simulations) system with ASCU hardware (for logic) and a DSP board (for dynamics) is developed to analyze skidding of the Hanvit-200 train during the process of braking. Experimental results are presented for the case that the skid on one of the four wheels is artificially generated using a Simulink model. A convenient GUI is prepared using ControlDesk of dSPACE.

A New Multimachine Robust Based Anti-skid Control System for High Performance Electric Vehicle

  • Hartani, Kada;Draou, Azeddine
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.214-230
    • /
    • 2014
  • This paper presents a high performance sensor less control four motorized wheels for electric vehicle. Firstly, we applied a sensor less master-slave DTC based control to both the two in wheel motors by using sliding mode observer for its quick response and its high reliability in electric vehicle application. Secondly, to overcome the possible loss of adherence of one of the four wheels which is likely to destabilize the vehicle a solution is proposed in this paper. Thirdly, a Fuzzy logic anti-skid control structure well adapted to the non-linear system is used to overcome the main problem of power train system in the wheel road adhesion characteristic. Various Simulation results have been include in this paper to show that the proposed control strategy can prevent vehicle sliding and show good vehicle stability on a curved path.

Real-time Simulation for Dynamic Characteristics of Mechanical Braking of the Korean Tilting Train (한국형 틸팅열차의 기계적 제동 동특성에 대한 실시간 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1294-1299
    • /
    • 2009
  • The Korean tilting train called Hanvit 200 was launched recently in Korea to improve train speed up to 200 km/h at conventional lines. In this paper, we propose a HILS system for simulations of mechanical braking of the Hanvit 200 train using actual ASCU, actual dump valves, Simulink, dSPACE board, and ControlDesk software. In the proposed HILS system, dynamics of wheelsets, bogies and car body, brake force generation, creep force generations are realized via mathematical models, and anti-skid logic is realized using actual components. The validity of the proposed HILS system is demonstrated via comparing results of real-time and off-line simulations.

Simulations for an ASCU of a Train Brake including a Pneumatic Model (공압모델이 포함된 철도차량 제동 ASCU 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93-97
    • /
    • 2010
  • Wheel skids may occur during train operations due to low adhesion at the wheel-rail contact point abnormally, and the skids, in turn, result in flats appearing on the wheels, which affect safety and ride comfort significantly. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents simulation studies on an anti-skid control unit (ASCU) with a brake system of a rolling stock including a pneumatic model for brake power supply and dump valve operation.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.