• Title/Summary/Keyword: Anti-Skew

Search Result 15, Processing Time 0.024 seconds

A Study on the Development of a New Concept Crane (새로운 형태의 컨테이너 크레인의 개발에 관한 연구)

  • 박찬훈;김두형;신영재;박경택;고재웅
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.273-280
    • /
    • 1999
  • Yard cranes are very useful equipments for handing of heavy containers, But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. Therefore rope-driven yard cranes require skilled drivers to depress sway and skew motions. So many researches have been concentrated on anti-sway and anti-skew algorithm controlling trolley speed or rope tension. Although many efforts, the rope-driven method is not proper to an automated yard equipment because of sway and skew motion. This paper will propose a new concept yard crane which has a new structure, overcomes defects of rope-driven cranes and is proper to automation. And we will study its actuality

Anti-sway System for Automatic Container Terminal (자동화 컨테이너 터미널용 Anti-Sway 시스템)

  • 박경택;박찬훈;김두형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.428-431
    • /
    • 2002
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. ropes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And main schemes are introduced and explained briefly.

  • PDF

On gardener's problem

  • Park, Dae-Yeon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.649-655
    • /
    • 1996
  • A positive, disjoint linear map $\phi : A \to B$ of C^*$-algebras preserves absolute values if any *-anti-homomorphism $\psi : A \to B$ is skew-hermitian with respect to every commutators of unitary elements.

  • PDF

GENERALIZED DERIVATIONS AND DERIVATIONS OF RINGS AND BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.625-637
    • /
    • 2013
  • We investigate anti-centralizing and skew-centralizing mappings involving generalized derivations and derivations on prime and semiprime rings. We also obtain some range inclusion results for generalized linear derivations and linear derivations on Banach algebras by applying the algebraic techniques. Some results in this note are to improve the ones in [22].

Anti-Sway System for Automated Crane (자동화 크레인을 위한 흔들림 방지 시스템)

  • 박찬훈;김두형;박경택
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes arc passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. :opes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-sidc container cranes. In this paper, we derive cquatlons of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

A Study on Sway Control of Containers of Yard Crane (야드 크레인의 컨테이너 흔들림 제어에 관한 연구)

  • 박찬훈;박경택;김두형;신영재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.64-71
    • /
    • 2000
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

A Study on Sway Control of Containers of Yard Crane (야드 크레인의 컨테이너 흔들림 제어에 관한 연구)

  • 박찬훈;박경택;김두형;신영재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.143-151
    • /
    • 2000
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

  • PDF

A Study on Dynamic Modeling and Vibration Analysis of Gantry Robot (겐트리 로봇의 동적 모델링 및 진동해석)

  • Cho, Chang-Je;park, Dong-Jun;Yang, Jun-Seok;koo, Young-mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • In general, gantry robot is very useful handling of heavy objects. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

An Experimental Study on the Accurate Tracking Control of a Transfer Crane Based on the 2DOF Servosystem Design Approach (트랜스퍼 크레인의 고정도 주행제어에 관한 연구 : 2자유도 서보계 설계법을 이용한 제어계 설계 및 실험적 연구)

  • Kim, Young-Bok;Lee, Kwon-Soon;Han, Seong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.57-62
    • /
    • 2006
  • The most important thing in acontainer terminal is to handle the cargo effectively in the limited time available. To achieve this objective, many strategies have been introduced and applied. To create an automated container terminal, it is necessary for the cargo handling equipment to be equipped with more intelligent control systems. From the middle of the 1990's, automated rail-mounted gantry cranes (RMGC) and rubber-tired gantry cranes (RTG) have been widely used to handle containers in yards. Recently, many pieces of equipment, like CCD cameras and sensors, have beenmounted in these cranes to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes, which allow for more effective cargo handling in yards. For this purpose, the modeling, tracking control, anti-sway system design, skew motion suppressing, and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modeling and a new tracking control approach are discussed, and an experimental study is performed based on a two-degree-of-freedom (2DOF) servosystem design.