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A NOTE ON COMPATIBLE VALUATIONS WITH
HIGHER LEVEL COMPLETE PREORDERINGS
AND HIGHER LEVEL ORDERINGS

DAE YEON PARK

ABSTRACT. In this paper we give some results on higher level com-
plete preorderings and higher level orderings in a field. Further we find
some properties which hold between compatible valuations and above
preoderings and orderings.

1. Introduction

The notion of orderings of a field was systematically studied by E.Ar-
tin and O.Schreier in 1920s. Especially the notion of preorderings is a
generalization of that of orderings. Concepts of orderings and preorder-
ings were developed successfully to level 2" [2,3] ,and partially to level 2n
[3,4] . In this paper ,comparing these two types, we proceed further to
find and supplement some properties that are related to level 2n which
were already shown in the case of level 2™ [2] miscellaneously. A great
part of this paper was written basically on [2].

2. Preliminaries

Let R be a ring with unity. A subset P C R is called an preprime(l,4]
if it satisfies the following conditions : (1) P+ P C P (2)PP C P
(3)0,1 € P (4)-1 ¢ P . So char (R) = 0. Let K be a field and a
subset T C K is called a preordering if it satisfies (1),(2),(3) in K and
T* =T — {0} is a subgroup of K* = K — {0}. This T is called proper
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if =1 ¢ T [2], in this case T N —T = {0}. If a* € T always implies
a € TU-T, T is said to be complete [1,4]. A complete and proper
preordering T is said to be an ordering if K*/T* is a cyclic group
[4]. Especially a preordering T is said to be a preordering of level 2n if
K?*" C T[3]. A complete and proper preordering 7" of level 2n is called
an ordering of level 2n [4] if K> /T is a cyclic group. A preprime T
in a field K is called a torsion preprime [1] if for each @ € K, there
exists a natural number m such that ¢™ € T. Exery torsion preprime
T C K is clearly a proper preordering and K */T* is a torsion group.
We always denote K, T and P be a field, a preordering of level 2n, and
an ordering of level 2n respectively unless otherwise stated. Then T is a
torsion preordering and by [1,(3.3)Propositon] k' = T — T if T is proper.

THEOREM 2. 1. The followings are equivalent: (1) T is proper. (2)
TN-T={0} (3) char(K)=0,T # K.

Let P,, be the set of all finite sums of 2n-th powersin K. If ~1 ¢ Py,
then Py, i1s a proper preordering of level 2n. By an application of Zorn’s
Lemma, we have a maximal proper one. Clearly /%, C T for any T in
K.

COROLLARY 2.2. For any field K, the following statements are equiv-
alent. (1) —1 ¢ PM (2) char(K) = 0, P, # K.

THEOREM 2.3. [4,Satz].4.Kor2.3,5atz2.17] Let K be char(K )= 0
Then the followings hold. (1) —1 ¢ Py, if and cnly if there exists a
complete and proper T. In this case Py, = NT, where T runs over all
which are complete and proper. (2) -1 & Py, if and only if K is real. (3)
Every T which is complete and proper is the interse ction of all orderings
of level 2n containing T.

For T and ay,aq,....,at in a field A, we define T[a,, ay,...,a;] to
be the set of all polynomial expressions in a,, as, .., a; with coeflicients
from T: Tt;1 kal'...al*. Then Tla;.ay. ...,ax] is the smallest preorder-
ing containing 7 and a,az,...,ax. Especially if there exists an element
T € K satisfying v ¢ TU —T and z*° € T for scme proper T . then
by [4.Lemma 1.3] we have T = Mgy ra2erT[c]. I T is complete
and proper, we can get a maximal one which is complete and proper
containing T by an application of Zorn’s Lemma. By Theorem 2.3.
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any T[aj,as,...,ax] which is complete and proper is the intersection of
all P satisfying T C P,ay,a,....ay € P . Restricting to T = Py, ,
any P,lai,az,..,a;,..,ax) that is complete and proper is the set of all
elements which lie precisely in those orderings of level 2n containing
a1,a2,y....,Qf.

3. Main Results

Let K be as above with a Krull valuation v [5] . We denote by
A,I,U,k,T its valuation ring,maximal ideal, group of units, the residue
field A/I, value group respectively. Let 1) : A — k be the canonical ephi-
morphism. Then T induces the preordering T := ANT = y(ANT) =
{a+I:a e TNA} C k. One easily verifies k*" ¢ T, T+T C T.TT C T.
Since every valuation ring is integrally closed [5,(10.6)Theorem], T is
complete when T is complete. A is said to be compatible with a com-
plete and proper T', written A ~ T, if T is a proper preordering. In
that case k is necessarily a real field by Theorem 2.3 and by definition
A is a real valuation ring(ie. k = A/I is formally real [cf.9].). Put
P:={a+1I:a¢€Pn A} Ck. This P is a complete preordering. P is
called compatible with v if 1 + 1 C P.

LEMMA 3.1. If a valuation ring A is compatible with P in K, then it
must be real.

PROOF. P is an ordering of level 2n [4, Satz 2.1,8]. Then by Theorem
2.3, k = A/I is real.

A field K with a valuation v is said to be 2-Henselian if Hensel's
Lemma holds for quadratic monic polinomials over the valuation ring of
v. Some properties related to this notion are explained in [5,7].

THEOREM 3.2. Let K be a field with a 2- Henselian valuation v and
P be in K. Then P is compatible with v.

PRrROOF. By Theorem 2.3, K is a real field and by [7,Theorem 3.16] k
is also real. Since v is non-dyadic [7.Lemma3.15], 1 + I = (14 I)?" for
all n € N [2]. But every 2n = 2! + ... + 2™ for some natural number
l,---,m. Sol+I€P.
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Denote @ be the set of rational numbers and Q% the positive rational
numbers. Set A(T) = {a € K : r+a € T for some r € Q*} and
IT)={a€ K:r+aeTforany r € Q*} where T is complete and
proper. Becker showed in [4] that A(T) is a real valuation ring with the
maximal ideal I(T'). Especially a valuation ring A is compatible with
P if A(P) C A [5,(6.6)Theorem]. Let F be a subfield of k. We set
A(P,F):={a€ K:r+a€ Pforsomer € FNP*} and I(P,F) :=
{e€e K:rtae Pforany r € FN P*}. Then A(P,F) is a valuation
ring compatible with P and its maximal ideal is I( P, F) [9].

THEOREM 3.3. A(P, F) is the valuation ring containing F .

PROOF. Since PNF C A(P,F) and PN F is an ordering of F , then
F=PNnF-PNFCA(PF)[]

Clearly A(P,Q) = A(P) and I(P,Q) = I(P). Let k(P,F) be the
residue field of A(P,F). Then k(P,F) is an extention of F = {a +
I(P,F) : a € F} and contains the ordering P = {a + I(P,F) : a €
PN A(P, F)} because A(P, F) is compatible with 1.

Let E/K be a field extension, P an ordering of level 2n in E. E/K is
called archimedian relative to P if for any a € E, there is r € K N P*
such that r + a € P, or equivalently if A(P,K) = F [2] .

THEOREM 3.4. Any extention E of K satisfying E # A(P.K) and
P C E is transcendental.

PROOF. Assume E/K is an algebraic extension and P C E. Since
K C A(P,K) , we have A(P,K) = E by [5,(9.8)Corollary]. So A(P,K)
is archimedian. Hence any extention E of K satisfving E # A(P,K) is
transcendental.

THEOREM 3.5. Let Fy; C Fy be two subfields of K, v the valuation
associated with A(P,Fy). Then (1) A(P,F\) C A(P,Fy) (2)A(P,F,) =
A(P,Fy)y := {a € K : a = 0 or v(a) > r for some r € T} where
E=v(F").

PROOF. (1) Since Fy C Fy ,we have PXNF; C P*NFy,s0 A(P, F}) C
A(P, F3). (2) Take £ := v(F,") a subgroup of . Le: A; := A(P,F\)x =
{a € K :a=0orv(a) > r for some r € £}. Clearly this 4, is a
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valuation ring containing A(P, F}). If a € A;(a # 0), there exists r € X
with v(a) > 7 = v(b) for some b € F,*. Then v(a) — v(b) = v(ab™') >0
,and ab~! € A(P,F}), so there exists s € Fy N P* C F; N P* with
s+ (ab™1)2" = s+ a2 = s+ a®™t7! € P, taking t := " e N P.
Since t € P* N F, ,we get ts + a’" € P, so a*" € A(P, F;). But every
valuation ring is integrally closed [5], we get a € A(P, F,). This implies
Ay C A(P, Fy). Conversely let a € A(P, F;). Then a** € A(P, F3) , so
there exists r € P*NFy such that r —a?" € P.Therefore v(a?") > v(r) €
T [9,Proposition 2.4] and we have a®" € A;. Since every valuation ring
is integrally closed,we have a € A,.

THEOREM 3.6. Let T,T[1 + I] be complete and proper . Then the
following statements are equivalent. (1) A ~ T (2) T[1+ 1] # K (3)
A~ P for some P D T.

PROOF. (1) = (2).—1 ¢ T implies TN —(1 + I) = ¢. We shall prove
T[14+1) = T-(1+1I), which obviously implies T{1 +1] # K . To this end
we show that T'- (14 I) is a proper preordering. Since other conditions
clearly hold, we shall only prove that T-(1+ I) is additively closed . Let
v be the valuation associated to A , let ¢,#' € T,¢,n € 1 4+ I; we have to
show ¢ :=te+t'n € T-(1+T) . If v(te) # v(t'n), say v(te) > v(t'n) , then
one gets z := tew , where w € 1+1 , hence z € T-(1+1). If v(te) = v(t'n),
thent' = tw,w € UNT, and ¢ = t(e+nw). Wesee e+nw = 14+w+ti,0 €1
. Assume 1+w €I ,thenw =—[1 - (1+w)] € TN—(1+1I)induces a
contradiction. Therefore e4+nw = (1+w)[1+(14-w)~ ] € T(1+1) and
x €T -(1+ 1) holds. (2)= (3). Since T[1 + I] is complete and proper
, there exists an P with T C T[1 + I] C P , in particular A ~ P. (3)
= (1). From A ~ P it follows that P # k . But we have T C P, so this
implies T # k . This implies that T is proper.

A valuation ring A is defined fully compatible [cf 2,7] with T if 1 +
I ¢ T. Clearly fully compatiblity implies compatibility . Let B be
a preordering of level 2n containing 7 in k. Then T-¢~'(B*) is a
preordering of level 2n on K with ¢(T - ¢~'(B*)) = B[7,8]. We can
generalize this notion. We call a subgroup V of K'* a subgroup of level
2nif —1 ¢ V and K**" C V holds.



648 Dae Yeon Park

PROPOSITION 3.7. Let T be a proper preorder:ng of level 2n of k =
A/I,V be as above satisfying w(VNU) < T. ThenT := V.~ (T* )u{0}

is a proper preordering of level 2n in K with T = T which is fully
compatible with A.

PrOOF. ¥(VNU) C T reduces T == T . Cleary K" ¢ T.TT C T
hold. Take a,b € V, e, € ¢=1(T*) ; let v be the veluation associated to
A. Ifv(a) # v(b), then we get ae+by € T as in the proof of Theorem3.6.
But if v(a) = v(b), then a = bw,w € V N U holds.so the result ae + bn =
blwe +n) € T is followed by we 7 = we +n € ' . Therefore T is
a proper preordering of level 2n. Since v =1 1) =1+ 1 C T.T is fully
compatible with A by definition .

REMARK. If a complete and proper T is fully compatible with A,
then for every ordering P O T, P is an ordering ove: T. Furthermore for
every ordering P> Tin k,T) :=T. L/f'"l(]ax) is a1 proper preordering
with Ty = P by Lemma 3.7. If S be an ordering with S > Ty, then

clearly P C S holds.

References

1. E. Becker, Partial orders on a field and valuation rings, Comm. in Algebra 7
(1979), 1933-1976.

. Hereditary- Pythagorean fields and ordering of higher level, Monografis

de Matematica No.29. Instituto de pura e Aplicada,Rio de Janeiro 1978..

3. , Local global theorem for diagonal forms, J Reine und angew. Math. 318
(1980), 36--50.
4. , Summen n-ter potenzen in koerpern, J.Reine 1nd Angew. Math. 330

(1982), 53-75.

5. O. Endler, Valuation Theory, Belin-Heidelberg-New York, 1972.

6. N. Jacobson, Lectures in Abstract Algebra 3, D. Nostrand Co.Inc., 1964.

7. T. Lam, Orderings, valuations and quadratic forms, CBMS. No. 52, AMS., 1983.

8. D. Y. Park, On preorderings of higher level, Commm. of KMS. 3 (1988), 7-12.

v On compatibility with preorderings of higher level and A(F, P), Bull.of
the Honam Math.Soc. 8 {1991), 117-121.

10. A. Prestel, Lectures on Fomally Real Fields, Springer Virlag. 1985.

Department of Mathematics Education
Jeonju University

Chonju 560-759, Korea



Comm. Korean Math. Soc. 11 (1996), No. 3, pp. 649-655

ON GARDNER’S PROBLEM
AN-Hyun KM

ABSTRACT. A positive, disjoint linear map ¢ : 2 -» B of C*-algebras
preserves absolute values if any x*-anti-homomorphism ¢ : 2 — B is
skew-hermitian with respect to every commutators of unitary elements.

Throughout this note suppose 2 and B are unital C*-algebras and
suppose the set AT = {a*a : a € A} is a closed convex cone of all positive
elements of 2. Every positive element a has a unique square root a? in
A, fa €U, |a| = (a*a)? is called the absolute value of a. A linear map
¢ : A — B is called positive if 4(AT) C BT, and is called 2-positive if
the map ¢ ® id, is positive on the C'*-algebra A @ M,(C) to B @ M,(C),
where M3(C) is the C*-algebra of 2 x 2 complex matrices. A linear
map ¢ : A — B is called o Jordan homomorphism if ¢(a?) = é(a)?
for all @ € A and is called a *-homomorphism if ¢(a*) = ¢(a)* and
#(ab) = ¢(a)d(b) for all a,b € A. A linear map ¢ : A — B is called unital
if ¢(Iy) = I and is called disjoint if zy = 0 in U implies ¢(z)o(y) =0
in ‘B.

In 1979, L.T. Gardner [2, Theorem 1] has shown that a 2-positive,
disjoint linear map of C*-algebras preserves absolute values. Also, in
[2], he gave the following problem:

GARDNER’S PROBLEM. : Can “2-positive” be replaced by “positive”
in the Gardner’s theorem?

In this note we give some partial solutions to Gardner’s problem.

We begin with:
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LEMMA 1. If ¢ : % — B is linear then the followings are equivalent:
(1) ¢(I)¢(a®) = ¢(a)? for all a € .
(i) @(I)p(ab+ ba) = ¢(a)d(b) + ¢(b)¢p(a) for all a,b € .

PROOF. (i) = (ii): Take a + b in place of a.
(11) = (i): Take b=a. O

LEMMA 2. If ¢ : A — B is a positive, disjoint linear map then we
have
(i) o(I)é(a®) = ¢(a)?
(i1) ¢(I) centralizes ¢(2) and ¢(I)" exists.

In particular, if ¢ is unital then ¢ is a Jordan homomorphism.

PROOF. If ¢ is a positive, disjoint linear map then an argument of
Gardner [2, Lemma 2] gives that ¢ preserves absolute values on self-
adjoint elements. Thus by another argument of Gardner [2, Corollary 7]
(by way of imbedding the codomain space into its bi-dual space), there
exists a Jordan homomorphism ¥ : 2 — B such tkat

(1) o(a) = ¢(I)(a) forall a € A,

¢(I) commutes with ¢(a) for all a € A, and ¢(I)~" exists. Thus we have
that

¢(I)(a®) = ¢(1)*y(a®) = ¢(I)*v(a)?
= o(I)¢(a)y(a) = d(a)p(I)¥(a) = ¢(a):. O

REMARK 1. It was known [2, Theorem 2] that :f (2) ¢: %4 - B isa
positive linear map then

¢ preserves absolute values if and only if ¢(I)é(12b) = ¢(a)sé(b) for all
a,be .
Thus if ¢ is unital then ¢ preserves absolute values if and only if ¢ is
a *-homomorphism. Observe that if the equality in (2) holds for all
self-adjoint elements then it also holds for all elements in .

We now have
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COROLLARY 1. If ¢ : 2 — B is a positive, disjoint linear map and if
either A or ¢(A) is commutative then ¢ preserves absolute values.

PROOF. From the argument for Lemma 2, we can see that ¢(a) =
#(I)(a) forall a € AU, where ¢ is a Jordan homomorphism. Since
Jordan homomorphisms of C*-algebras are *-homomorphisms if either
the domain or range is commutative, we have that 1 is a *- homomor-
phism (Note that if () is commutative then (%) is also commuta-
tive). Further since ¢(I) centralizes ¢(), it follows that ¢(I)¢(ab) =
$(I)*h(ab) = $(I)*1p(a)y(b) = &(I)y(a)d(I)i(b) = ¢(a)é(b), which, by
(2), gives the results. O

As usual [a, b] denotes the commutator ab— ba and [[a, b], c] is called
the Lie triple product. It was well known ([3]) that any Jordan homo-
morphism preserves arbitrary powers, squares of commutators, and Lie
triple products. We have an extended version to the nonunital case.

LEMMA 3. If ¢ : A — B is a positive, disjoint linear map then we
have:
(1) ()" '¢(a™) = ¢(a)® foralln € Nanda € U.
(i) ¢(I)?d(aba) = ¢(a)p(b)¢(a) for all a,b € .
(iii) ¢(I)?¢([a,b]?) = [¢(a), ¢(b))® for all a,bc .
(iv) ¢(I)?¢([la,b],c]) = [[¢(a), $(b)], ¢(c)] for all a,b,c€ 2.

PROOF. By Lemma 2, ¢(I)¢(a?) = ¢(a)? and ¢(I) commutes with
#(a) for all a € .
(i) Apply Lemma 1 with b = a? and then use an inductive step.
(ii) Use the identity 2aba = 4(a+b)®—(a+2b)® — 3¢ +4b3 —2(a?b+ba?).
(ii1) Use (i) and (ii).
(iv) Use the identity abc + cba = (a 4 c)b(a + ¢) — aba — cbe. O

COROLLARY 2. If ¢ : U4 — ‘B is a positive, disjoint, injective lin-
ear map and if either U or ¢(2A) is commutative then the other is also
commutative.

Corollary 2 is a corollary of the well known result in the unital case.
But for completeness we give a proof: By Lemma 2, ¢(I)¢(a?) = ¢(a)?
for all a € A. If #(A) is commutative then [[é(a), ¢(b)],q§(c)] = 0.
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But since ¢(7) is invertible, it follows from Lemma 3(iii) and 3(iv) that
¢(la,b]?) = 0 and ¢([[a, bl,c])= 0. Since ¢ is injective we have that
[@,8]2 = 0 and [[a,b],c] = 0, which implies that [a, 8] is a nilpotent
contained in the center of A. Since an abelian C*-algebra has no non-
zero nilpotents, it follows that [a,b] = 0, and hence 2 is commutative.
Conversely, if 2 is commutative then a similar argument gives that o(A)
1s commutative, in which case the condition of injection of ¢ is not
needed.

THEOREM 1. If ¢ : A — B is a positive, disjoint linear map satisfying
(3) d(I)¢(ab+b*a*) = ¢(a)d(b)+(b*)d(a*) for all unitary elements a. b
€ % then ¢ preserves absolute values.

ProOOF. The restriction of ¢ to an abelian C*- subalgebra of 2 is
completely positive (cf. [4, Theorem 3.10]). Since cvery normal element
a € U is contained in an abelian C'*-subalgebra, it follows from Gardner’s
theorem that ¢ preserves absolute values on normal elements, and hence
on unitary elements. Thus if u is unitary then |¢ u)| = ¢(|u]) = &(I).
Recall that the unitary group of 2 spans 2. More specifically, if h € U
is any self-adjoint element then the spectral radius of 2_|'|hh_|'| is less than
1, so that we may write ([1, Proposition 1.14]) that & = {|A||(v + u*) for
some unitary element v € A. Thus if a € U is arbitrary then it can be
written by a constant multiple of a sum of four unitaries: a = Z?—n Citlg,
where ¢, ¢2,¢3,¢4 € R and u's are unitary. We now have that

4
B(a)® =) eid(u)® Y ciolus)
1=1 =1
4 )
=Yt + Y e (d(ul)d(u;) + d(u)o(u,)
1=1 iyj€{1<v._..‘4}
<]

4
=Y afoI)P+ o) > ciejplutu, +uluy) ((by (3))
=1

1j€{1, 4}
1<y
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=¢(I)¢(Zcﬁf+ > cicj<u:uj+u§Ui>)

i=1 L,jE{1, 4}
1<)
4 4
= ¢(I)¢ (Zciu: Z)
= ¢(1)é(|al?)
= ¢(lal)?,

which implies that ¢ preserves absolute values because ¢ is positive. O

THEOREM 2. Suppose ¢ : A — B is a positive, disjoint linear map.
If any *-anti-homomorphism 1 : A — B is skew-hermitian with respect
to every commutators of unitary elements, in the sense that

(4) ¥(la, b)) = —¥([a,b]) for all unitary elements a,b € YA

then ¢ preserves absolute values.

PROOF. We first assume that ¢ is unital and hence, by Lemma 2, it
is a Jordan homomorphism. Recall ([5, Theorem 3.3]) that every Jordan
homomorphism of C*-algebras is a direct sum of a *+-homomorphism and
a *- anti-homomorphism: say, ¢ = ¢; + ¢ where ¢;(resp. @) isa *
—homomorphism (resp. *-anti-homomorphism). Then our condition (4)
gives that for any unitary elements a,b € 2,

¢(ab+b*a*) = ¢1(a)pi(b) + 2(a)da(b) + ¢1(b*)d1(a*) + $2(b*)p2(a*)
+ (#2(ab — ba) + ($2(ab — ba))*)
= ¢(a)d(b) + ¢(b*)d(a*).

Thus by Theorem 1, ¢ preserves absolute values. If ¢ is not unital then
in view of (1), ¢ can be written as: ¢ = ¢(I)y, where ¢ is a Jordan
homomorphism (Note that i is a unital, positive, disjoint map). then
by what we have just proved, 9 is a *-homomorphism. Therefore we have
that ¢(1)¢(ab) = ¢(1)*p(ab) = G(1)b(@)d(I)(5) = §(a)p(b), which, by
(2), gives the result. [
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REMARK 2. If either 2 or ¢(2) is commutative then evidently (4)
holds: thus we recapture Corollary 1.

We recall that a linear map ¢ : A — B is called a derivation if
d(ab) = ag(b) + ¢(a)b for all a,b € A and is called a Jordan derivation
if ¢(a®) = ad(a) + ¢(a)a for all a € Y.

EXAMPLE. Let ¢; (¢ = 1,2) be linear maps of U into itself such that
1/)1¢'2 = ’(L//‘Q’I,Z)l = 0. Deﬁne 1) IQ[ — AIQ(Q[) by

d(a) = (u’):(la) 1’?15“)) for each a € .

If ¢ is a unital, positive, disjoint linear map then ¢ preserves absolute

values.

PROOF. By lemma 2, ¢ is a Jordan homomorphism. Thus since
Y12 = oy = 0,

2 ) 2 N

a
_ ( a? ays(a) + d’l(af)a)
T\ Ya(a)a+ aya(a) a® !

which implies that each 1 is a Jordan derivation. But since every Jordan
derivation of a C*-algebra into itself is a derivation ([3]), it follows that
each 9, is a derivation. Therefore

_ ab  y(ab)
Hab) = (¢2<ab) ab )

= ab ayy (b) + pi(a)b
B (¢’2(a)b + aiy(b) ab > = ¢(a)o(b)

which, by (2), implies that ¢ preserves absolute values. 0O

REMARK 3. The transposition map on M>(C is a unital, positive
Jordan injective map. But this map is not a *-homomorphism in general
(in fact, it is a *-anti-homomorphism). This example shows that if the
answer to Gardner’s problem is affirmative then the passage from Jordan-
ness to *-ness use disjoint-ness necessarily although it was already used
in the passage from positive-ness to Jordan-ness.
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REMARK 4. Suppose ¢ : % — B is a unital, positive, disjoint linear
map and write

¢ = ¢1 + ¢2, where ¢; (resp. ¢2)

is a *-homomorphism (resp. *-anti-homomorphism).

Then we can see that ¢(ab) — ¢(a)¢(b) = é2([a,d]). Thus if ab = 0 then
$2(a)d2(b) = ¢a(ba) = 0, which says that ¢, is also a positive, disjoint
linear map. Thus Gardner’s problem reduces to the followings:

Does there exist a *-anti-homomorphism which is a positive, disjoint
linear map?
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