A NOTE ON COMPATIBLE VALUATIONS WITH HIGHER LEVEL COMPLETE PREORDERINGS AND HIGHER LEVEL ORDERINGS

DAE YEON PARK

ABSTRACT. In this paper we give some results on higher level complete preorderings and higher level orderings in a field. Further we find some properties which hold between compatible valuations and above preoderings and orderings.

1. Introduction

The notion of orderings of a field was systematically studied by E.Artin and O.Schreier in 1920s. Especially the notion of preorderings is a generalization of that of orderings. Concepts of orderings and preorderings were developed successfully to level 2^n [2,3], and partially to level 2^n [3,4]. In this paper, comparing these two types, we proceed further to find and supplement some properties that are related to level 2^n which were already shown in the case of level 2^n [2] miscellaneously. A great part of this paper was written basically on [2].

2. Preliminaries

Let R be a ring with unity. A subset $P \subset R$ is called an preprime[1,4] if it satisfies the following conditions: (1) $P + P \subset P$ (2) $PP \subset P$ (3) $0, 1 \in P$ (4) $-1 \notin P$. So char (R) = 0. Let K be a field and a subset $T \subset K$ is called a *preordering* if it satisfies (1),(2),(3) in K and $T^{\times} = T - \{0\}$ is a subgroup of $K^{\times} = K - \{0\}$. This T is called *proper*

Received May 22, 1995. Revised March 23, 1996.

1991 AMS Subject Classification: 13A18, 12J15.

Key words and phrases: complete preordering, level, valuation, compatibility.

This research was supported by Jeonju University Research Fund

if $-1 \notin T$ [2], in this case $T \cap -T = \{0\}$. If $a^2 \in T$ always implies $a \in T \cup -T$, T is said to be complete [1,4]. A complete and proper preordering T is said to be an ordering if K^{\times}/T^{\times} is a cyclic group [4]. Especially a preordering T is said to be a preordering of level 2n if $K^{2n} \subset T[3]$. A complete and proper preordering T of level 2n is called an ordering of level 2n [4] if K^{\times}/T^{\times} is a cyclic group. A preprime T in a field K is called a torsion preprime [1] if for each $a \in K$, there exists a natural number m such that $a^m \in T$. Every torsion preprime $T \subset K$ is clearly a proper preordering and K^{\times}/T^{\times} is a torsion group. We always denote K, T and P be a field, a preordering of level 2n, and an ordering of level 2n respectively unless otherwise stated. Then T is a torsion preordering and by [1,(3.3)Propositon] K = T - T if T is proper.

THEOREM 2. 1. The followings are equivalent: (1) T is proper. (2) $T \cap -T = \{0\}$ (3) $char(K) = 0, T \neq K$.

Let P_{2n} be the set of all finite sums of 2n-th powers in K. If $-1 \notin P_{2n}$, then P_{2n} is a proper preordering of level 2n. By an application of Zorn's Lemma, we have a maximal proper one. Clearly $P_{2n} \subset T$ for any T in K.

COROLLARY 2.2. For any field K, the following statements are equivalent. (1) $-1 \notin P_{2n}$. (2) $\operatorname{char}(K) = 0, P_{2n} \neq K$.

THEOREM 2.3. [4,Satz1.4,Kor2.3,Satz2.17] Let K be $\operatorname{char}(K) = 0$. Then the followings hold. (1) $-1 \notin P_{2n}$ if and only if there exists a complete and proper T. In this case $P_{2n} = \cap T$, where T runs over all which are complete and proper. (2) $-1 \notin P_{2n}$ if and only if K is real. (3) Every T which is complete and proper is the intersection of all orderings of level 2n containing T.

For T and $a_1, a_2,, a_k$ in a field K, we define $T[a_1, a_2, ..., a_k]$ to be the set of all polynomial expressions in $a_1, a_2, ..., a_k$ with coefficients from T: $\sum t_{i1...ik}a_1^{i1}...a_k^{ik}$. Then $T[a_1, a_2, ..., a_k]$ is the smallest preordering containing T and $a_1, a_2, ..., a_k$. Especially if there exists an element $x \in K$ satisfying $x \notin T \cup -T$ and $x^2 \in T$ for some proper T, then by [4,Lemma 1.3] we have $T = \bigcap_{a \notin T \cup -T, a^2 \in T} T[a]$. If T is complete and proper, we can get a maximal one which is complete and proper containing T by an application of Zorn's Lemma. By Theorem 2.3.

any $T[a_1,a_2,...,a_k]$ which is complete and proper is the intersection of all P satisfying $T\subset P,a_1,a_2,...,a_k\in P$. Restricting to $T=P_{2n}$, any $P_{2n}[a_1,a_2,...,a_i,...,a_k]$ that is complete and proper is the set of all elements which lie precisely in those orderings of level 2n containing $a_1,a_2,...,a_k$.

3. Main Results

Let K be as above with a Krull valuation v [5]. We denote by A, I, U, k, Γ its valuation ring,maximal ideal, group of units, the residue field A/I, value group respectively. Let $\psi: A \to k$ be the canonical ephimorphism. Then T induces the preordering $\bar{T} := \overline{A \cap T} = \psi(A \cap T) = \{a+I: a \in T \cap A\} \subset k$. One easily verifies $k^{2n} \subset \bar{T}, \bar{T} + \bar{T} \subset \bar{T}, \bar{T}T \subset \bar{T}$. Since every valuation ring is integrally closed [5,(10.6)Theorem], \bar{T} is complete when T is complete. A is said to be compatible with a complete and proper T, written $A \sim T$, if \bar{T} is a proper preordering. In that case k is necessarily a real field by Theorem 2.3 and by definition A is a real valuation ring(i.e. k = A/I is formally real [cf.9].). Put $\bar{P} := \{a+I: a \in P \cap A\} \subset k$. This \bar{P} is a complete preordering. P is called compatible with v if $1+I \subset P$.

LEMMA 3.1. If a valuation ring A is compatible with P in K, then it must be real.

PROOF. \tilde{P} is an ordering of level 2n [4, Satz 2.1,8]. Then by Theorem 2.3, k = A/I is real.

A field K with a valuation v is said to be 2-Henselian if Hensel's Lemma holds for quadratic monic polinomials over the valuation ring of v. Some properties related to this notion are explained in [5,7].

THEOREM 3.2. Let K be a field with a 2- Henselian valuation v and P be in K. Then P is compatible with v.

PROOF. By Theorem 2.3, K is a real field and by [7,Theorem 3.16] k is also real. Since v is non-dyadic [7,Lemma3.15], $1+I=(1+I)^{2^n}$ for all $n \in N$ [2]. But every $2n=2^l+\cdots+2^m$ for some natural number l, \dots, m . So $1+I \in P$.

Denote Q be the set of rational numbers and Q^+ the positive rational numbers. Set $A(T) = \{a \in K : r \pm a \in T \text{ for some } r \in Q^+\}$ and $I(T) = \{a \in K : r \pm a \in T \text{ for any } r \in Q^+\}$ where T is complete and proper. Becker showed in [4] that A(T) is a real valuation ring with the maximal ideal I(T). Especially a valuation ring A is compatible with P if $A(P) \subset A$ [5,(6.6)Theorem]. Let F be a subfield of K. We set $A(P,F) := \{a \in K : r \pm a \in P \text{ for some } r \in F \cap P^\times\}$ and $I(P,F) := \{a \in K : r \pm a \in P \text{ for any } r \in F \cap P^\times\}$. Then A(P,F) is a valuation ring compatible with P and its maximal ideal is I(P,F) [9].

THEOREM 3.3. A(P,F) is the valuation ring containing F.

PROOF. Since $P \cap F \subset A(P,F)$ and $P \cap F$ is an ordering of F, then $F = P \cap F - P \cap F \subset A(P,F)$ [1].

Clearly A(P,Q)=A(P) and I(P,Q)=I(P). Let k(P,F) be the residue field of A(P,F). Then k(P,F) is an extention of $\tilde{F}=\{a+I(P,F):a\in F\}$ and contains the ordering $\tilde{P}=\{a+I(P,F):a\in P\cap A(P,F)\}$ because A(P,F) is compatible with P.

Let E/K be a field extension, P an ordering of level 2n in E. E/K is called $archimedian\ relative\ to\ P$ if for any $a\in E$, there is $r\in K\cap P^{\times}$ such that $r\pm a\in P$, or equivalently ,if A(P,K)=E [2].

THEOREM 3.4. Any extention E of K satisfying $E \neq A(P,K)$ and $P \subset E$ is transcendental.

PROOF. Assume E/K is an algebraic extension and $P \subset E$. Since $K \subset A(P,K)$, we have A(P,K) = E by [5,(9.8)Corollary]. So A(P,K) is archimedian. Hence any extention E of K satisfying $E \neq A(P,K)$ is transcendental.

THEOREM 3.5. Let $F_1 \subset F_2$ be two subfields of K, v the valuation associated with $A(P,F_1)$. Then (1) $A(P,F_1) \subset A(P,F_2)$ (2) $A(P,F_2) = A(P,F_1)_{\Sigma} := \{a \in K : a = 0 \text{ or } v(a) \geq r \text{ for some } r \in \Sigma\}$ where $\Sigma = v(F_2^{\times})$.

PROOF. (1) Since $F_1 \subset F_2$, we have $P^{\times} \cap F_1 \subset P^{\times} \cap F_2$, so $A(P, F_1) \subset A(P, F_2)$. (2) Take $\Sigma := v(F_2^{\times})$ a subgroup of Γ . Let $A_1 := A(P, F_1)_{\Sigma} = \{a \in K : a = 0 \text{ or } v(a) \geq r \text{ for some } r \in \Sigma\}$. Clearly this A_1 is a

valuation ring containing $A(P,F_1)$. If $a\in A_1 (a\neq 0)$, there exists $r\in \Sigma$ with $v(a)\geq r=v(b)$ for some $b\in F_2^{\times}$. Then $v(a)-v(b)=v(ab^{-1})\geq 0$, and $ab^{-1}\in A(P,F_1)$, so there exists $s\in F_1\cap P^{\times}\subset F_2\cap P^{\times}$ with $s\pm (ab^{-1})^{2n}=s\pm a^{2n}b^{-2n}=s\pm a^{2n}t^{-1}\in P$, taking $t:=b^{2n}\in F_2\cap P$. Since $t\in P^{\times}\cap F_2$, we get $ts\pm a^{2n}\in P$, so $a^{2n}\in A(P,F_2)$. But every valuation ring is integrally closed [5], we get $a\in A(P,F_2)$. This implies $A_1\subset A(P,F_2)$. Conversely let $a\in A(P,F_2)$. Then $a^{2n}\in A(P,F_2)$, so there exists $r\in P^{\times}\cap F_2$ such that $r-a^{2n}\in P$. Therefore $v(a^{2n})\geq v(r)\in \Gamma$ [9,Proposition 2.4] and we have $a^{2n}\in A_1$. Since every valuation ring is integrally closed, we have $a\in A_1$.

THEOREM 3.6. Let T, T[1+I] be complete and proper. Then the following statements are equivalent. (1) $A \sim T$ (2) $T[1+I] \neq K$ (3) $A \sim P$ for some $P \supset T$.

PROOF. (1) \Rightarrow (2). $-\bar{1} \notin \bar{T}$ implies $T \cap -(1+I) = \phi$. We shall prove $T[1+I] = T \cdot (1+I)$, which obviously implies $T[1+I] \neq K$. To this end we show that $T \cdot (1+I)$ is a proper preordering. Since other conditions clearly hold, we shall only prove that $T \cdot (1+I)$ is additively closed. Let v be the valuation associated to A, let $t,t' \in T, \epsilon, \eta \in 1+I$; we have to show $x := t\epsilon + t'\eta \in T \cdot (1+T)$. If $v(t\epsilon) \neq v(t'\eta)$, say $v(t\epsilon) > v(t'\eta)$, then one gets $x := t\epsilon \omega$, where $\omega \in 1+I$, hence $x \in T \cdot (1+I)$. If $v(t\epsilon) = v(t'\eta)$, then $t' = t\omega, \omega \in U \cap T$, and $x = t(\epsilon + \eta \omega)$. We see $\epsilon + \eta \omega = 1 + \omega + i, i \in I$. Assume $1 + \omega \in I$, then $\omega = -[1 - (1+\omega)] \in T \cap -(1+I)$ induces a contradiction. Therefore $\epsilon + \eta \omega = (1+\omega)[1+(1+w)^{-1}i] \in T(1+I)$ and $x \in T \cdot (1+I)$ holds. (2) \Rightarrow (3). Since T[1+I] is complete and proper, there exists an P with $T \subset T[1+I] \subset P$, in particular $A \sim P$. (3) \Rightarrow (1). From $A \sim P$ it follows that $\bar{P} \neq k$. But we have $\bar{T} \subset \bar{P}$, so this implies $\bar{T} \neq k$. This implies that \bar{T} is proper.

A valuation ring A is defined fully compatible [cf 2,7] with T if $1+I\subset T$. Clearly fully compatiblity implies compatibility. Let B be a preordering of level 2n containing \bar{T} in k. Then $T\cdot\phi^{-1}(B^\times)$ is a preordering of level 2n on K with $\phi(T\cdot\phi^{-1}(B^\times))=B[7,8]$. We can generalize this notion. We call a subgroup V of K^\times a subgroup of level 2n if $-1 \notin V$ and $K^{\times 2n} \subset V$ holds.

PROPOSITION 3.7. Let \hat{T} be a proper preordering of level 2n of k=A/I, V be as above satisfying $\psi(V\cap U)\subset \hat{T}$. Then $T:=V\cdot\psi^{-1}(\hat{T}^\times)\cup\{0\}$ is a proper preordering of level 2n in K with $\bar{T}=\hat{T}$ which is fully compatible with A.

PROOF. $\psi(V\cap U)\subset \hat{T}$ reduces $\hat{T}=\hat{T}$. Clearly $K^{2n}\subset T, TT\subset T$ hold. Take $a,b\in V,\epsilon,\eta\in\psi^{-1}(\hat{T}^{\times})$; let v be the valuation associated to A. If $v(a)\neq v(b)$, then we get $a\epsilon+b\eta\in T$ as in the proof of Theorem3.6. But if v(a)=v(b), then $a=b\omega,\omega\in V\cap U$ holds,so the result $a\epsilon+b\eta=b(\omega\epsilon+\eta)\in T$ is followed by $\overline{\omega\epsilon+\eta}=\bar{\omega}\epsilon+\bar{\eta}\in \hat{T}^{\times}$. Therefore T is a proper preordering of level 2n. Since $\psi^{-1}(\bar{1})=1+I\subset T,T$ is fully compatible with A by definition .

REMARK. If a complete and proper T is fully compatible with A, then for every ordering $P \supset T, \bar{P}$ is an ordering over \bar{T} . Furthermore for every ordering $\hat{P} \supset T$ in $k, T_1 := T \cdot \psi^{-1}(\hat{P}^{\times})$ is a proper preordering with $\tilde{T}_1 = \hat{P}$ by Lemma 3.7. If S be an ordering with $S \supset T_1$, then clearly $\hat{P} \subset \bar{S}$ holds.

References

- E. Becker, Partial orders on a field and valuation rings, Comm. in Algebra 7 (1979), 1933-1976.
- 2. _____, Hereditary-Pythagorean fields and ordering of higher level, Monografis de Matematica No.29. Instituto de pura e Aplicada, Rio de Janeiro 1978...
- 3. _____, Local global theorem for diagonal forms, J.Reine und angew. Math. 318 (1980), 36-50.
- 4. _____, Summen n-ter potenzen in koerpern, J.Reine and Angew. Math. 330 (1982), 53-75.
- 5. O. Endler, Valuation Theory, Belin-Heidelberg-New York, 1972.
- 6. N. Jacobson, Lectures in Abstract Algebra 3, D. Nostrand Co.Inc., 1964.
- 7. T. Lam, Orderings, valuations and quadratic forms, CBMS. No. 52, AMS., 1983.
- 8. D. Y. Park, On preorderings of higher level, Commm. of KMS. 3 (1988), 7-12.
- 9. _____, On compatibility with preorderings of higher level and A(F,P), Bull.of the Honam Math.Soc. 8 (1991), 117-121.
- 10. A. Prestel, Lectures on Fomally Real Fields, Springer Verlag, 1985.

Department of Mathematics Education Jeonju University Chonju 560-759, Korea

ON GARDNER'S PROBLEM

AN-HYUN KIM

ABSTRACT. A positive, disjoint linear map $\phi: \mathfrak{A} \to \mathfrak{B}$ of C^* -algebras preserves absolute values if any *-anti-homomorphism $\psi: \mathfrak{A} \to \mathfrak{B}$ is skew-hermitian with respect to every commutators of unitary elements.

Throughout this note suppose \mathfrak{A} and \mathfrak{B} are unital C^* -algebras and suppose the set $\mathfrak{A}^+ = \{a^*a : a \in \mathfrak{A}\}$ is a closed convex cone of all positive elements of \mathfrak{A} . Every positive element a has a unique square root $a^{\frac{1}{2}}$ in \mathfrak{A}^+ . If $a \in \mathfrak{A}$, $|a| = (a^*a)^{\frac{1}{2}}$ is called the absolute value of a. A linear map $\phi: \mathfrak{A} \to \mathfrak{B}$ is called positive if $\phi(\mathfrak{A}^+) \subset \mathfrak{B}^+$, and is called 2-positive if the map $\phi \otimes \operatorname{id}_2$ is positive on the C^* -algebra $\mathfrak{A} \otimes M_2(\mathbb{C})$ to $\mathfrak{B} \otimes M_2(\mathbb{C})$, where $M_2(\mathbb{C})$ is the C^* -algebra of 2×2 complex matrices. A linear map $\phi: \mathfrak{A} \to \mathfrak{B}$ is called a Jordan homomorphism if $\phi(a^2) = \phi(a)^2$ for all $a \in \mathfrak{A}$ and is called a *-homomorphism if $\phi(a^*) = \phi(a)^*$ and $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathfrak{A}$. A linear map $\phi: \mathfrak{A} \to \mathfrak{B}$ is called unital if $\phi(I_{\mathfrak{A}}) = I_{\mathfrak{B}}$ and is called disjoint if xy = 0 in \mathfrak{A} implies $\phi(x)\phi(y) = 0$ in \mathfrak{B} .

In 1979, L.T. Gardner [2, Theorem 1] has shown that a 2-positive, disjoint linear map of C^* -algebras preserves absolute values. Also, in [2], he gave the following problem:

GARDNER'S PROBLEM. : Can "2-positive" be replaced by "positive" in the Gardner's theorem?

In this note we give some partial solutions to Gardner's problem.

We begin with:

Received November 15, 1995. Revised March 23, 1996.

¹⁹⁹¹ AMS Subject Classification: 46L05.

Key words and phrases: Positive map, disjoint, absolute values.

This work was supported in part by the CNJ Foundation, 1995-1996.

LEMMA 1. If $\phi: \mathfrak{A} \to \mathfrak{B}$ is linear then the followings are equivalent:

- (i) $\phi(I)\phi(a^2) = \phi(a)^2$ for all $a \in \mathfrak{A}$.
- (ii) $\phi(I)\phi(ab+ba) = \phi(a)\phi(b) + \phi(b)\phi(a)$ for all $a, b \in \mathfrak{A}$.

PROOF. (i) \Rightarrow (ii): Take a + b in place of a.

(ii)
$$\Rightarrow$$
 (i): Take $b = a$.

LEMMA 2. If $\phi: \mathfrak{A} \to \mathfrak{B}$ is a positive, disjoint linear map then we have

- (i) $\phi(I)\phi(a^2) = \phi(a)^2$
- (ii) $\phi(I)$ centralizes $\phi(\mathfrak{A})$ and $\phi(I)^{-1}$ exists.

In particular, if ϕ is unital then ϕ is a Jordan homomorphism.

PROOF. If ϕ is a positive, disjoint linear map then an argument of Gardner [2, Lemma 2] gives that ϕ preserves absolute values on self-adjoint elements. Thus by another argument of Gardner [2, Corollary 7] (by way of imbedding the codomain space into its bi-dual space), there exists a Jordan homomorphism $\psi: \mathfrak{A} \to \mathfrak{B}$ such that

(1)
$$\phi(a) = \phi(I)\psi(a) \quad \text{for all } a \in \mathfrak{A},$$

 $\phi(I)$ commutes with $\phi(a)$ for all $a\in\mathfrak{A},$ and $\phi(I)^{-1}$ exists. Thus we have that

$$\begin{split} \phi(I)\phi(a^2) &= \phi(I)^2 \psi(a^2) &= \phi(I)^2 \psi(a)^2 \\ &= \phi(I)\phi(a)\psi(a) = \phi(a)\phi(I)\psi(a) = \phi(a)^2. \quad \Box \end{split}$$

REMARK 1. It was known [2, Theorem 2] that if (2) $\phi: \mathfrak{A} \to \mathfrak{B}$ is a positive linear map then

 ϕ preserves absolute values if and only if $\phi(I)\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathfrak{A}$.

Thus if ϕ is unital then ϕ preserves absolute values if and only if ϕ is a *-homomorphism. Observe that if the equality in (2) holds for all self-adjoint elements then it also holds for all elements in \mathfrak{A} .

We now have

COROLLARY 1. If $\phi: \mathfrak{A} \to \mathfrak{B}$ is a positive, disjoint linear map and if either \mathfrak{A} or $\phi(\mathfrak{A})$ is commutative then ϕ preserves absolute values.

PROOF. From the argument for Lemma 2, we can see that $\phi(a) = \phi(I)\psi(a)$ for all $a \in \mathfrak{A}$, where ψ is a Jordan homomorphism. Since Jordan homomorphisms of C^* -algebras are *-homomorphisms if either the domain or range is commutative, we have that ψ is a *- homomorphism (Note that if $\phi(\mathfrak{A})$ is commutative then $\psi(\mathfrak{A})$ is also commutative). Further since $\phi(I)$ centralizes $\phi(\mathfrak{A})$, it follows that $\phi(I)\phi(ab) = \phi(I)^2\psi(ab) = \phi(I)^2\psi(a)\psi(b) = \phi(I)\psi(a)\phi(I)\psi(b) = \phi(a)\phi(b)$, which, by (2), gives the results. \square

As usual [a, b] denotes the commutator ab - ba and [a, b], c is called the *Lie triple product*. It was well known ([3]) that any Jordan homomorphism preserves arbitrary powers, squares of commutators, and Lie triple products. We have an extended version to the nonunital case.

LEMMA 3. If $\phi: \mathfrak{A} \to \mathfrak{B}$ is a positive, disjoint linear map then we have:

- (i) $\phi(I)^{n-1}\phi(a^n) = \phi(a)^n$ for all $n \in \mathbb{N}$ and $a \in \mathfrak{A}$.
- (ii) $\phi(I)^2\phi(aba) = \phi(a)\phi(b)\phi(a)$ for all $a, b \in \mathfrak{A}$.
- (iii) $\phi(I)^2\phiig([a,b]^2ig)=[\phi(a),\phi(b)]^2$ for all $a,b\in\mathfrak{A}$.
- (iv) $\phi(I)^2\phi([[a,b],c]) = [[\phi(a),\phi(b)],\phi(c)]$ for all $a,b,c\in\mathfrak{A}$.

PROOF. By Lemma 2, $\phi(I)\phi(a^2) = \phi(a)^2$ and $\phi(I)$ commutes with $\phi(a)$ for all $a \in \mathfrak{A}$.

- (i) Apply Lemma 1 with $b = a^2$ and then use an inductive step.
- (ii) Use the identity $2aba = 4(a+b)^3 (a+2b)^3 3a^3 + 4b^3 2(a^2b+ba^2)$.
- (iii) Use (i) and (ii).
- (iv) Use the identity abc + cba = (a + c)b(a + c) aba cbc. \square

COROLLARY 2. If $\phi: \mathfrak{A} \to \mathfrak{B}$ is a positive, disjoint, injective linear map and if either \mathfrak{A} or $\phi(\mathfrak{A})$ is commutative then the other is also commutative.

Corollary 2 is a corollary of the well known result in the unital case. But for completeness we give a proof: By Lemma 2, $\phi(I)\phi(a^2) = \phi(a)^2$ for all $a \in \mathfrak{A}$. If $\phi(\mathfrak{A})$ is commutative then $[\phi(a), \phi(b)], \phi(c) = 0$.

But since $\phi(I)$ is invertible, it follows from Lemma 3(iii) and 3(iv) that $\phi([a,b]^2) = 0$ and $\phi([[a,b],c]) = 0$. Since ϕ is injective we have that $[a,b]^2 = 0$ and [[a,b],c] = 0, which implies that [a,b] is a nilpotent contained in the center of \mathfrak{A} . Since an abelian C^* -algebra has no nonzero nilpotents, it follows that [a,b] = 0, and hence \mathfrak{A} is commutative. Conversely, if \mathfrak{A} is commutative then a similar argument gives that $\phi(\mathfrak{A})$ is commutative, in which case the condition of injection of ϕ is not needed.

THEOREM 1. If $\phi: \mathfrak{A} \to \mathfrak{B}$ is a positive, disjoint linear map satisfying (3) $\phi(I)\phi(ab+b^*a^*) = \phi(a)\phi(b)+\phi(b^*)\phi(a^*)$ for all unitary elements $a,b \in \mathfrak{A}$ then ϕ preserves absolute values.

PROOF. The restriction of ϕ to an abelian C^* - subalgebra of $\mathfrak A$ is completely positive (cf. [4, Theorem 3.10]). Since every normal element $a\in \mathfrak A$ is contained in an abelian C^* -subalgebra, it follows from Gardner's theorem that ϕ preserves absolute values on normal elements, and hence on unitary elements. Thus if u is unitary then $|\phi(u)| = \phi(|u|) = \phi(I)$. Recall that the unitary group of $\mathfrak A$ spans $\mathfrak A$. More specifically, if $h\in \mathfrak A$ is any self-adjoint element then the spectral radius of $\frac{h}{2||h||}$ is less than 1, so that we may write ([1, Proposition I.14]) that $h = ||h||(u + u^*)$ for some unitary element $u \in \mathfrak A$. Thus if $a \in \mathfrak A$ is arbitrary then it can be written by a constant multiple of a sum of four unitaries: $a = \sum_{i=1}^4 c_i u_i$, where $c_1, c_2, c_3, c_4 \in \mathbb R$ and $u_i's$ are unitary. We now have that

$$|\phi(a)|^{2} = \sum_{i=1}^{4} c_{i}\phi(u_{i})^{*} \sum_{i=1}^{4} c_{i}\phi(u_{i})$$

$$= \sum_{i=1}^{4} c_{i}^{2} |\phi(u_{i})|^{2} + \sum_{\substack{i,j \in \{1,\cdots,4\}\\i < j}} c_{i}c_{j}(\phi(u_{i}^{*})\phi(u_{j}) + \phi(u_{j}^{*})\phi(u_{i}))$$

$$= \sum_{i=1}^{4} c_{i}^{2}\phi(I)^{2} + \phi(I) \sum_{\substack{i,j \in \{1,\cdots,4\}\\i < j}} c_{i}c_{j}\phi(u_{i}^{*}u_{j} + u_{j}^{*}u_{i}) \quad ((\text{by }(3)))$$

$$= \phi(I)\phi\left(\sum_{i=1}^{4} c_{i}^{2}I + \sum_{\substack{i,j \in \{1, \dots, 4\}\\ i < j}} c_{i}c_{j}(u_{i}^{*}u_{j} + u_{j}^{*}u_{i})\right)$$

$$= \phi(I)\phi\left(\sum_{i=1}^{4} c_{i}u_{i}^{*} \sum_{i=1}^{4} c_{i}u_{i}\right)$$

$$= \phi(I)\phi(|a|^{2})$$

$$= \phi(|a|)^{2},$$

which implies that ϕ preserves absolute values because ϕ is positive. \Box

THEOREM 2. Suppose $\phi: \mathfrak{A} \to \mathfrak{B}$ is a positive, disjoint linear map. If any *-anti-homomorphism $\psi: \mathfrak{A} \to \mathfrak{B}$ is skew-hermitian with respect to every commutators of unitary elements, in the sense that

(4)
$$\psi([a,b])^* = -\psi([a,b])$$
 for all unitary elements $a,b \in \mathfrak{A}$

then ϕ preserves absolute values.

PROOF. We first assume that ϕ is unital and hence, by Lemma 2, it is a Jordan homomorphism. Recall ([5, Theorem 3.3]) that every Jordan homomorphism of C^* -algebras is a direct sum of a *-homomorphism and a *- anti-homomorphism: say, $\phi = \phi_1 + \phi_2$ where $\phi_1(\text{resp. }\phi_2)$ is a *-homomorphism (resp. *-anti-homomorphism). Then our condition (4) gives that for any unitary elements $a, b \in \mathfrak{A}$,

$$\begin{split} \phi(ab+b^*a^*) &= \phi_1(a)\phi_1(b) + \phi_2(a)\phi_2(b) + \phi_1(b^*)\phi_1(a^*) + \phi_2(b^*)\phi_2(a^*) \\ &\quad + \left(\phi_2(ab-ba) + (\phi_2(ab-ba))^*\right) \\ &= \phi(a)\phi(b) + \phi(b^*)\phi(a^*). \end{split}$$

Thus by Theorem 1, ϕ preserves absolute values. If ϕ is not unital then in view of (1), ϕ can be written as: $\phi = \phi(I)\psi$, where ψ is a Jordan homomorphism (Note that ψ is a unital, positive, disjoint map). then by what we have just proved, ψ is a *-homomorphism. Therefore we have that $\phi(I)\phi(ab) = \phi(I)^2\psi(ab) = \phi(I)\psi(a)\phi(I)\psi(b) = \phi(a)\phi(b)$, which, by (2), gives the result. \square

REMARK 2. If either \mathfrak{A} or $\phi(\mathfrak{A})$ is commutative then evidently (4) holds: thus we recapture Corollary 1.

We recall that a linear map $\phi: \mathfrak{A} \to \mathfrak{B}$ is called a *derivation* if $\phi(ab) = a\phi(b) + \phi(a)b$ for all $a, b \in \mathfrak{A}$ and is called a *Jordan derivation* if $\phi(a^2) = a\phi(a) + \phi(a)a$ for all $a \in \mathfrak{A}$.

EXAMPLE. Let ψ_i (i=1,2) be linear maps of $\mathfrak A$ into itself such that $\psi_1\psi_2=\psi_2\psi_1=0$. Define $\phi:\mathfrak A\to M_2(\mathfrak A)$ by

$$\phi(a) = egin{pmatrix} a & \psi_1(a) \ \psi_2(a) & a \end{pmatrix} \quad ext{for each } a \in \mathfrak{A}.$$

If ϕ is a unital, positive, disjoint linear map then ϕ preserves absolute values.

PROOF. By lemma 2, ϕ is a Jordan homomorphism. Thus since $\psi_1\psi_2=\psi_2\psi_1=0$,

$$\begin{pmatrix} a^2 & \psi_1(a^2) \\ \psi_2(a^2) & a^2 \end{pmatrix} = \phi(a^2) = \phi(a)^2$$

$$= \begin{pmatrix} a^2 & a\psi_1(a) + \psi_1(a)a \\ \psi_2(a)a + a\psi_2(a) & a^2 \end{pmatrix},$$

which implies that each ψ_i is a Jordan derivation. But since every Jordan derivation of a C^* -algebra into itself is a derivation ([3]), it follows that each ψ_i is a derivation. Therefore

$$\begin{split} \phi(ab) &= \begin{pmatrix} ab & \psi_1(ab) \\ \psi_2(ab) & ab \end{pmatrix} \\ &= \begin{pmatrix} ab & a\psi_1(b) + \psi_1(a)b \\ \psi_2(a)b + a\psi_2(b) & ab \end{pmatrix} = \phi(a)\phi(b) \end{split}$$

which, by (2), implies that ϕ preserves absolute values. \square

REMARK 3. The transposition map on $M_2(\mathbb{C})$ is a unital, positive Jordan injective map. But this map is not a *-homomorphism in general (in fact, it is a *-anti-homomorphism). This example shows that if the answer to Gardner's problem is affirmative then the passage from Jordanness to *-ness use disjoint-ness necessarily although it was already used in the passage from positive-ness to Jordan-ness.

REMARK 4. Suppose $\phi: \mathfrak{A} \to \mathfrak{B}$ is a unital, positive, disjoint linear map and write

$$\phi = \phi_1 + \phi_2$$
, where ϕ_1 (resp. ϕ_2) is a *-homomorphism (resp. *-anti-homomorphism).

Then we can see that $\phi(ab) - \phi(a)\phi(b) = \phi_2([a,b])$. Thus if ab = 0 then $\phi_2(a)\phi_2(b) = \phi_2(ba) = 0$, which says that ϕ_2 is also a positive, disjoint linear map. Thus Gardner's problem reduces to the followings:

Does there exist a *-anti-homomorphism which is a positive, disjoint linear map?

ACKNOWLEDGEMENTS. This work was undertaken during a sabbatical leave at the Utah State University. I would like to take this oppertunity to thank Prof. LeRoy B. Beasley and Prof. Woo Young Lee for their helpful suggestions.

References

- F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
- L. T. Gardner, Linear maps of C*-algebras preserving the absolute values, Proc. Amer. Math. Soc. 76 (1979), 271-278.
- 3. N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502.
- 4. V. I. Paulsen, Completely bounded maps and dilations, John Wiley & Sons, New York, 1986.
- E. Størmer, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc. 120 (1965), 438-447.

Department of mathematics
Changwon National University
Changwon 641-773, Korea
E-mail address: ahkim@sarim.changwon.ac.kr