• Title/Summary/Keyword: Anti-Icing Equipment

Search Result 7, Processing Time 0.021 seconds

Development of a Low-power Walk-way for Anti-Icing (결빙 방지를 위한 저전력 갑판이동로 개발)

  • Bae, Sang-Eun;Cho, Su-gil;Lee, Woon-Seek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.353-364
    • /
    • 2019
  • The walk-way means a passage installed on the deck of a ship so that a person can safely move under any circumstances. So, the walk-way has to maintain a temperature of $5^{\circ}C$ or more for anti/de-icing even at an ambient temperature of $-62^{\circ}C$, a temperature in polar region. At present, the walk-way with heating cable is used, but the anti/de-icing effect is insufficient due to low heat transfer efficiency. Also, it has a construction problem due to heavy weight. In this study, an walk-way with a CNT surface heating element is proposed for the high anti/de-icing effect and the heating value per unit volume. The international standard survey, conceptual design, and simulation for the structural safety and the heat transfer are performed for the development of the proposed walk-way. To enhance the performance, the case studies based on the simulation analysis are conducted. Finally, the final prototype, applying the optimum material and thickness (3.2t of SS400) based on the case study results, is fabricated and experimented.

Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake (회전익기 공기흡입구 주위 방빙장치 성능 해석)

  • Ahn, Gook-Bin;Jung, Ki-Young;Jung, Sung-Ki;Shin, Hun-Bum;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • Ice accretions on the surface around a rotorcraft air intake can deteriorate the safety of rotorcraft due to the engine performance degradation. The computational simulation based on modern CFD methods can be considered extremely valuable in analyzing icing effects before exact but very expensive icing wind tunnel or in-flight tests are conducted. In this study the range and amount of ice on the surface of anti-icing equipment are investigated for heat-on and heat-off modes. It is demonstrated through the computational prediction and the icing wind tunnel test that the maximum mass and height of ice of heat-on mode are reduced about 80% in comparison with those of heat-off mode.

Study for Certification of Aircraft De-icing System (항공기 제빙 시스템의 인증에 대한 연구)

  • Jun, Jonghyub
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • De-icing system is essential for any aircraft to fly in icing conditions. So there are two kinds of aircraft-those that are certificated for flight in icing conditions and those that are not. Icing certification involves a rigorous testing program, and relatively few light aircraft carry this approval. From a legal perspective, aircraft that do not have all required ice protection equipment installed and functional are prohibited from venturing into an area where icing conditions are known. There are a few kinds of de-icing system. It is necessary to review the systems in point of aircraft certification considering the operational and safety issues.

Study about the Standard of Anti-icing System Based on Geography and Geometric Designs (기하구조 및 지형적 요소를 고려한 융설시스템 설치 기준 정립에 관한 연구)

  • Lee, Dong-Hyun;Jeong, Won-Seok;Kim, Ji-Won;Ko, Seok-Beom
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • Anti-icing system can immediately respond when snowing is expected or the snow comes down on the road surface. It has been recognized that the system can reduce traffic accidents and congestion by quickly removing the frozen road surface area. However, it is very difficult to implement this system due to the expensive equipment installation and operation cost, Recently, there was a developed program for predicting the freezing area using three-dimensional model and tracking the sun path. But, there is no objective analysis method and all developed approaches are different so that the general standard of anti-icing system is needed. In this study, we proposed the decision criteria for determining application priorities of the anti-icing system based on weather and road conditions, i.e., geometric and topographic conditions. Regional climate survey, topographical analysis, and dynamic vehicle simulation considered road geometry and skid resistance was conducted to standardize the installation method of anti-icing system.

A Study of Winterization Design for Helideck Using the Heating Cable on Ships and Offshore Platforms (열선을 이용한 해양플랜트 헬리데크의 방한설계에 관한 연구)

  • Bae, So Young;Kang, Gyu-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In recent years, the demand for ships and offshore platforms that can navigate and operate through the Arctic Ocean has been rapidly increasing due to global warming and large reservoirs of oil and natural gas in the area. Winterization design is one of the key issues to consider in the robust structural safety design and building of ships that operate in the Arctic and Sub-Arctic regions. However, international regulations for winterization design in Arctic condition regulated that only those ships and offshore platforms with a Polar Class designation and/or an alternative standard. In order to cope with the rising demand for operating in the Arctic region, existing and new Arctic vessels with a Polar Class designation are lacking to cover for adequate winterization design with HSE philosophy. Existing ships and offshore platform was not designed based on reliable data based on numerical and experiment studies. There are only designed as a performance and functional purposes. It is very important to obtain of reliable data and provide of design guidance of the anti-icing structures by taking the effects of low temperature into consideration. Therefore, the main objective of this paper reconsiders anti-icing design of aluminum helideck using the heating cable. To evaluate of reliable data and recommend of anti-icing design method, various types of analysis and methods can be applied in general. In the present study, finite element method carried out the thermal analysis with cold chamber testing for performance and capacity of heating cables.

Planning Guidance for Snow Control Material Storage Facilities Based on Case Studies (사례조사를 통한 제설전진기지 시설기준에 관한 연구)

  • Kim, Geun-Young;Kim, Hee-Jea;Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2016
  • The snow control storage facilities have the physical requirements that are an anti-icing and deicing operations. They are efficiently and quickly performed, and composed of a vehicle depot for the snow removal equipment and truck, anti-icing and deicing chemical storages, and the control utilities. This study is to investigate the planning guidance of foreign countries, and the actual conditions of the snow control chemical storage facilities for expressway, the national highway and the local road, and is to suggest the planning guidelines. As some of the authorities have no fixed structures for the snow control storage, this study analyze the 5 cases constructed lately. From the result of the case studies, the operations performed in the snow control storage facilities and drawback of the facilities are analyzed with respect to layout, size, plan, and structure, and the improvement planning guidance is also suggested.

Study on Water Repellency of PTFE Surface Treated by Plasma Etching (플라즈마 에칭 처리된 PTFE 표면의 발수성 연구)

  • Kang, Hyo Min;Kim, Jaehyung;Lee, Sang Hyuk;Kim, Kiwoong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2021
  • Many plants and animals in nature have superhydrophobic surfaces. This superhydrophobic surface has various properties such as self-cleaning, moisture collection, and anti-icing. In this study, the superhydrophobic properties of PTFE surface were treated by plasma etching. There were four important factors that changed the surface properties. Micro-sized protrusions were formed by plasma etching. The most influential parameter was RF Power. The contact angle of the pristine PTFE surface was about 113.8°. The maximum contact angle of the surface after plasma treatment with optimized parameters was about 168.1°. In this case, the sliding angle was quite small about 1°. These properties made it possible to remove droplets easily from the surface. To verify the self-cleaning effect of the surface, graphite was used to contaminate the surface and remove it with water droplets. Graphite particles were easily removed from the optimized surface compared to the pristine surface. As a result, a surface having water repellency and self-cleaning effects could be produced with optimized plasma etching parameters.