• Title/Summary/Keyword: Anti-Alzheimer

Search Result 206, Processing Time 0.028 seconds

Neuroprotective Activity of Cynaroside Isolated from Lysimachia christinae (금전초에서 분리한 cynaroside의 신경세포보호 활성)

  • Gahee Ryu;Choong Je Ma
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • In the previous study, we reported that cynaroside isolated from Lysimachia christinae methanolic extract had potent neuroprotective activities in neuronal cell death injured by excessive glutamate. In this study, we tried to confirm the neuroprotective activities of cynaroside in glutamate injured HT22 cells and establish mechanisms of neuroprotective action of cynaroside. We employed HT22 cells damaged by glutamate-induced cell death as a bioassay system. Cynaroside decreased reactive oxygen species increased by excessive glutamate treatment in HT22 cells. Also, Ca2+ concentration was decreased by cynaroside treatment. Cynaroside restored mitochondrial membrane potential to normal condition. It also increased not only glutathione reductase but also peroxidase to the control level. And it increased amount of glutathione, an endogenous antioxidant. These results suggested that cynaroside isolated from L. christinae showed potent neuroprotective activity through the anti-oxidative pathway.

Ameliorative Effect of Aster scaber Thunberg and Chaenoleles sinensis Koehne Complex Extracts Against Oxidative Stress-induced Memory Dysfunction in PC12 Cells and ICR Mice (PC12세포와 동물모델에서의 기억력 장애를 유도하는 산화적스트레스에 대한 취나물과 모과 복합추출물의 개선 효과)

  • Park, Chan Kyu;Choi, Soo Jung;Shin, Dong Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.365-375
    • /
    • 2019
  • Background: Oxidative stress plays an important role in neuro-degenerative disorders such as Alzheimer's disease. Oxidative stress is mediated by reactive oxygen species (ROS), which are implicated in the pathogenesis of numerous diseases, and account for the toxicity of a wide range of compounds. Methods and Results: In order to study the neuro-protective effect of the complex extracts of Aster scaber Thunberg (AS) and Chaenoleles sinensis Koehne (CSK) against hydrogen peroxide in PC12 cells, cell viability was evaluated by the MTT assay using tetrazole, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the intracellular ROS levels were determined the by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. In order to examine the anti-amnesic effects of the complex extracts of AS and CSK, behavioral tests were performed on male ICR mice. The ameliorating effect of the complex extracts against Aβ1-42-induced learning and memory impairment was analyzed by y-maze and passive avoidance tests. The AS and CSK extracts showed neuro-protective activity both in vitro and in vivo, and the neuro-protective effect of their 60 : 40 (AS : CSK) mixture was better than that of the other mixtures. Moreover, the complex extracts synergistically inhibited acetylcholinesterase activity and rapid peroxidation. Conclusions: A mixture of the AS and CSK extracts could be used to develop functional foods and serve as raw materials for the development of therapeutics against Alzheimer's disease.

Effects of Ramulus et Uncus Uncariae DM fraction on CT105-injuried Neuronal Cells (조구슬 디클로로메탄분획이 CT105에 의한 신경세포 상해에 미치는 영향)

  • Jang Hyun Ho;Choi Hyuk;Yang Hyun Duk;Kim Sang Tae;Kim Tae Heon;Kang Hyung Won;Lyu Young Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1810-1820
    • /
    • 2004
  • The purpose of this study was to estimate the effects of Ramulus et Uncus Uncariae DM fraction on CT105-injuried neuronal cells. We were examined by ROS formation, neurite outgrowth assay and DPPH scravage assay. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. We studied on the regeneratory and inhibitory effects of anti-Alzheimer disease in pCT105-induced neuroblastoma cell lines by REUD. Findings from our experiments have shown that REUD inhibits the synthesis or activities of CT105, which has neurotoxityies and apoptotic activities in cell line. In addition, treatment of REUD(>50㎍/㎖ for 12 hours) partially prevented CT105-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by the treatment with its. REUD(>50㎍/㎖ for 12 hours) repaired CT105-induced neurite outgrowth when SK-N-SH cell lines was transfected with CT105. As the result of this study, In REUD group, the apoptosis in the nervous system was inhibited, the repai: against the degeneration of Neuroblastoma cells by CT105 expression was promoted. Base on these findings, REUD may be beneficial for the treatment of AD.

Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils

  • Choi, Erika Y.;Kang, Sam Sik;Lee, Sang Kook;Han, Byung Hee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2020
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease and a major cause of dementia in elderly individuals worldwide. Increased deposition of insoluble amyloid β (Aβ) fibrils in the brain is thought be a key neuropathological hallmark of AD. Many recent studies show that natural products such as polyphenolic flavonoids inhibit the formation of insoluble Aβ fibrils and/or destabilize β-sheet-rich Aβ fibrils to form non-cytotoxic aggregates. In the present study, we explored the structure-activity relationship of naturally-occurring biflavonoids on Aβ amyloidogenesis utilizing an in vitro thioflavin T assay with Aβ1-42 peptide which is prone to aggregate more rapidly to fibrils than Aβ1-40 peptide. Among the biflavonoids we tested, we found amentoflavone revealed the most potent effects on inhibiting Aβ1-42 fibrillization (IC50: 0.26 µM), as well as on disassembling preformed Aβ1-42 fibrils (EC50: 0.59 µM). Our structure-activity relationship study suggests that the hydroxyl groups of biflavonoid compounds play an essential role in their molecular interaction with the dynamic process of Aβ1-42 fibrillization. Our atomic force microscopic imaging analysis demonstrates that amentoflavone directly disrupts the fibrillar structure of preformed Aβ1-42 fibrils, resulting in conversion of those fibrils to amorphous Aβ1-42 aggregates. These results indicate that amentoflavone affords the most potent anti-amyloidogenic effects on both inhibition of Aβ1-42 fibrillization and disaggregation of preformed mature Aβ1-42 fibrils.

Inhibition of $A{\beta}42$ Fibrillation and Toxicity with ${\beta}$-Asarone ($A{\beta}42$의 섬유화 및 독성에 대한 ${\beta}$-Asarone의 저해 효과)

  • Kim, Jia;Lee, Chul Won;Lee, Boo Kyun;Lee, Jang Cheon;An, Won Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.317-321
    • /
    • 2014
  • Amyloid-${\beta}$ protein ($A{\beta}$) is a pathological component of Alzheimer's disease (AD) by participating in the senile plaque formation in the patient's brain. Although the exact mechanism of $A{\beta}$ toxicity is not fully elucidated, it is considered to be closely related to its fibrillation process. For prevention of AD, recent studies have suggested various small molecules which inhibit $A{\beta}$ fibrillation. In this report, ${\beta}$-asarone found in acorus plant has been investigated as an anti-amyloid molecule. ${\beta}$-Asarone was demonstrated to prevent in vitro fibrillation of $A{\beta}$ by inducing the oligomer formation that obviously decreased cytotoxicity. Therefore, ${\beta}$-asarone could be suggested as an inhibitory agent of $A{\beta}$ fibrillation and toxicity, which would help us not only to understand underlying principle of amyloidogenesis mechanism but also to develop a controlling strategy toward AD.

Potential Role of Ursodeoxycholic Acid in Suppression of Nuclear Factor Kappa B in Microglial Cell Line (BV-2)

  • Joo, Seong-Soo;Won, Tae-Joan;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.954-960
    • /
    • 2004
  • Expression of the NF-$textsc{k}$B-dependent genes responsible for inflammation, such as TNF-$\alpha$, IL-1$\beta$, and nitric oxide synthase (NOS), contributes to chronic inflammation which is a major cause of neurodegenerative diseases (i.e. Alzheimer's disease). Although NF-$textsc{k}$B plays a biphasic role in different cells like neurons and microglia, controlling the activation of NF-$textsc{k}$B is important for its negative feedback in either activation or inactivation. In this study, we found that ursodeoxycholic acid (UDCA) inhibited I$textsc{k}$B$\alpha$ degradation to block expression of the NF-$textsc{k}$B-dependent genes in microglia when activated by $\beta$-amyloid peptide (A$\beta$). We also showed that when microglia is activated by $A\beta$42, the expression of A20 is suppressed. These findings place A20 in the category of ' protective ' genes, protecting cells from pro-inflammatory reper-toires induced in response to inflammatory stimuli in activated microglia via NF-$textsc{k}$B activation. In light of the gene and proteins for NF-$textsc{k}$B-dependent gene and inactivator for NF-$textsc{k}$B (I$textsc{k}$B$\alpha$), the observations now reported suggest that UDCA plays a role in supporting the attenuation of the production of pro-inflammatory cytokines and NO via inactivation of NF-$textsc{k}$B. Moreover, an NF-$textsc{k}$B inhibitor such as A20 can collaborate and at least enhance the anti-inflammatory effect in microglia, thus giving a potent benefit for the treatment of neurodegenerative diseases such as AD.uch as AD.

Effects of Chongmyung-tang, Polygalae Radix and Acori Graminei Rhizoma on $A{\beta}$ Toxicity and Memory Dysfunction in Mice (총명탕, 원지, 석창포가 베타아밀로이드로 유발된 학습과 기억장애에 미치는 영향)

  • Park, Eun-Kyung;Shim, Eun-Shep;Jung, Hyuk-Sang;Sohn, Nak-Won;Sohn, Young-Joo
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.608-620
    • /
    • 2008
  • Objectives : This study investigated the protective effects of the water extracts of Chongmyung-tang, Polygalae Radix, and Acori Graminei Rhizoma in an in vivo Alzheimer's disease (AD) mouse model. Methods : Memory impairment was induced by an intraventricular injection of $A{\beta}25-35$ peptides and subsequently Chongmyung-tang, Polygalae Radix, or Acori Graminei Rhizoma extract were administered orally for 14days. Results : In the water maze task, Chongmyung-tang, Polygalae Radix, and Acori Graminei Rhizoma extracts improved learning ability during the acquisition period and significantly increased memory scores during the retention period versus $A{\beta}-injected$ controls. Furthermore, the toxicity of $A{\beta}25-35$ on hippocampus was assessed immunohistochemically (Tau, MAP2, TUNEL, Bax) and by in vitro study. Chongmyung-tang, Polygalae Radix, and Acori Graminei Rhizoma demonstrated significant neuroprotective effects against oxidative damage and apoptotic cell death of hippocampal neurons damaged by $A{\beta}25-35$. Conclusions : These results suggested that Chongmyung-tang, Polygalae Radix and Acori Graminei Rhizoma extract improve memory impairment and reduce Alzheimer's dementia via anti-apoptotic effects and by modulating the expressions of Tau and MAP2 protein in the hippocampus.

  • PDF

Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function

  • Lee, Ah Young;Hwang, Bo Ra;Lee, Myoung Hee;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.274-281
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: The accumulation of amyloid-${\beta}$ ($A{\beta}$) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an $A{\beta}_{25-35}$-injected mouse model. MATERIALS/METHODS: Male ICR mice were intracerebroventricularly injected with aggregated $A{\beta}_{25-35}$ to induce AD. $A{\beta}_{25-35}$-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS: Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by $A{\beta}_{25-35}$, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the $A{\beta}_{25-35}$-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the $A{\beta}_{25-35}$-injected mouse brain. CONCLUSIONS: These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by $A{\beta}$.

Comparative effects of Radix Polygalae and Rhizoma Acori Graminei on CT105-induced neuroblastoma cell lines (원지(遠志)와 석창포(石菖蒲)의 단독 및 혼합추출액이 CT105 로 유도된 신경세포암 세포주에 미치는 영향)

  • Han, Won-Ju;Kim, Hyung-Soo;Kim, Sang-Tae;Kim, Tae-Heon;Lyu, Yeoung-Su;Kang, Hyung-Won
    • Journal of Oriental Neuropsychiatry
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2003
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the future AD will be the largest problem in public health service. From old times, Much medicines have been used for treatment of dementia, but there is no medicine having obvious effect. AD is one of brain retrogression disease. So We studied on herbal medicine that have a relation of brain retrogression. From old times, In Oriental Medicine, Radix Polygalae and Rhizoma Acori Graminei have been used for disease in relation to brain retrogression. We studied of anti-Alzheimer effect on CT105-induced neuroblastoma cell lines by Radix Polygalae(RP) and Rhizoma Acori Graminei(RAG) water extract. As the result of this study, In RP and RAG group, the apoptosis in the nervous system is inhibited, the repair against the degeneration of Neuroblastoma cells by CT105 expression is induced. These results indicate that In RP and RAG, RAG possess the strongest in inhibitory effect of apoptosis in the nervous system and repair effect against the degeneration of Neuroblastoma cells by CT105 expression.

  • PDF

Physicochemical Characteristics of Antidementia Acetylcholinesterase Inhibitor-containing Methanol Extract from Sorghum bicolor and Industrial Application (항치매성 Acetylcholinesterase저해물질을 함유하고 있는 수수 메탄올 추출물의 특성 및 산업적 응용)

  • Song, Jung-Eun;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2008
  • Alzheimer's disease is charaterized by the acetylcholine depletion, amyloid b-protein aggregation and neurofibrillary tangles. The prevention of the breakdown of acetylcholine by acetylcholinesterase (AChE) inhibitor has the best clinically therapeutic efficacy for Alzheimer's disease patients. To develop new antidementia alternative drugs or nutraceuticals, methanol extracts of Sorghum bicolor was screened from various extracts of cereals and legumes as a potent AChE inhibitor-containing extract in previous paper. In this paper, physicochemical properties of the methanol extracts was investigated. The methanol extracts was soluble by water, methanol and DMSO and had 215 nm and 282nm of maximum absorption spectra. It was also stable at 20-$100^{\circ}C$ and pH 2.0-10.0 for 1 hr. Test product was prepared by using methanol extracts from Sorghum bicolor and changes of its quality during storge at $20^{\circ}C$ and $40^{\circ}C$ were investigated. It was very stable for 8 weeks at $40^{\circ}C$.

  • PDF