• 제목/요약/키워드: Anti-Aircraft

검색결과 103건 처리시간 0.02초

항공기용 제동장치의 ABS 제어를 위한 최적 슬립율 결정에 관한 시험적 연구 (Experimental Research on Finding Best Slip Ratio for ABS Control of Aircraft Brake System)

  • 이미선;송원종;최종윤
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.597-607
    • /
    • 2017
  • The general control method for Anti-lock Brake System(ABS) is that the wheel slip ratio is observed and the braking force is controlled in real time in order to keep the wheel slip ratio under the value of the best slip ratio. When a wheel runs on the state of the best slip ratio, the ground friction of the wheel approaches the highest value. The value of best slip ratio, theoretically, is known as the value between 10 and 20 % and it is dependant on the ground condition such as dry, wet and ice. It is an important parameter for the braking performance and affects the braking stability and efficiency. In this thesis, an experimental method is suggested, which is a reliable way to decide the best slip ratio through dynamo tests simulating aircraft taxiing conditions. The obtained best slip ratio is proved its validity by results of aircraft taxiing tests.

항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구 (A Study on the Antiabrasion of the Aircraft Carbon Disk Brake)

  • 이장현;염현호;홍민성
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

항공기용 ABS 제동시스템의 노면 조건별 제동특성에 관한 시험적 연구 (Experimental Research on Braking Characteristics of Aircraft ABS Brake System with Ground Conditions)

  • 이미선
    • 한국항공운항학회지
    • /
    • 제25권2호
    • /
    • pp.18-24
    • /
    • 2017
  • Results of the experimental research are described in this thesis, which are about braking characteristics of aircraft ABS brake system with different ground conditions. Dynamo-tests were conducted with the state of the application aircraft condition and with two different ground conditions. The Braking characteristics on each ground condition were drawn from the results of occurrence of skid, braking distance and deceleration. The braking performance of the application aircraft could be anticipated and the efficient range of braking operation could be set with those results.

On the development of the Anuloid, a disk-shaped VTOL aircraft for urban areas

  • Petrolo, Marco;Carrera, Erasmo;D'Ottavio, Michele;de Visser, Coen;Patek, Zdenek;Janda, Zdenek
    • Advances in aircraft and spacecraft science
    • /
    • 제1권3호
    • /
    • pp.353-378
    • /
    • 2014
  • This paper deals with the early development of the Anuloid, an innovative disk-shaped VTOL aircraft. The Anuloid concept is based on the following three main features: the use of a ducted fan powered by a turboshaft for the lift production to take-off and fly; the Coanda effect that is developed through the circular internal duct and the bottom portion of the aircraft to provide further lift and control capabilities; the adoption of a system of ducted fixed and swiveling radial and circumferential vanes for the anti-torque mechanism and the flight control. The early studies have been focused on the CFD analysis of the Coanda effect and of the control vanes; the flyability analysis of the aircraft in terms of static performances and static and dynamic stability; the preliminary structural design of the aircraft. The results show that the Coanda effect is stable in most of the flight phases, vertical flight has satisfactory flyability qualities, whereas horizontal flight shows dynamic instability, requiring the development of an automatic control system.

소형 대공 추적레이다용 전원공급기 개발 (Development of Power Supply for Small Anti-air Tracking Radar)

  • 김홍락;김윤진;이원영;우선걸;김광희
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.119-125
    • /
    • 2022
  • 소형 대공 추적레이다용 전원공급기는 시스템이 잡음의 영향 없이 빠르고 안정적으로 전원을 공급받을 수 있도록 해야 한다. 이를 위하여 신뢰성 있는 전원변환을 위하여 DC-DC 변환기를 많이 적용한다. 또한 DC-DC 변환기의 스위칭 주파수 노이즈가 시스템의 탐지 추적 성능에 영향을 줄 수 있는 False Alarm 과 Ghost 를 유발하지 않도록 해야 하며, 추적 레이다가 동작중 실시간으로 전원을 모니터링 할 수 있는 점검 기능을 보유하고 있어야 한다. 본 연구에서는 소형 대공 추적 레이다에 적용하기 위하여 +28VDC 입력을 받아서 최대 출력 𐩒𐩒𐩒 W, 효율 80% 이상(@100%부하), 출력 전원 6개의 다중 출력 스위칭 전원공급기를 개발하였고 효율 80% 이상을 달성하기 위하여 전력이 큰 출력에 대해서는 DC-DC 변환기를 적용하였고 나머지 소전력 출력에 대해서는 출력 전류 및 노이즈를 고려하여 리니어 레귤레이터를 적용하여 설계 제작하여 시험 결과 100% 부하조건에서 85%의 우수한 효율 특성을 확인하였다.

Further results on the development of a novel VTOL aircraft, the Anuloid. Part I: Aerodynamics

  • Petrolo, Marco;Carrera, Erasmo;Iuso, Gaetano;Patek, Zdenek;Janda, Zdenek
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.401-419
    • /
    • 2017
  • This paper presents the main outcomes of the preliminary development of the Anuloid, an innovative disk-shaped VTOL aircraft. The Anuloid has three main features: lift is provided by a ducted fan powered by a turboshaft; control capabilities and anti-torque are due to a system of fixed and movable surfaces that are placed in the circular internal duct and the bottom portion of the aircraft; the Coanda effect is exploited to enable the control capabilities of such surfaces. In this paper, results from CFD analyses and wind tunnel tests are presented. Horizontal and vertical flights were considered, including accelerated flight. Particular attention was paid to the experimental analysis of the Coanda effect via a reduced scale 3D printed model. The results suggest that the Coanda effect is continuously present at the lower surface of the Anuloid and may be exploited for the control of the aircraft. Also, very complex 3D flows may develop around the aircraft.

가변스팬 모핑날개를 가진 비행체의 공력특성 및 비행 제어 (Aerodynamics and Flight Control of Air Vehicle with Variable Span Morphing Wing)

  • 배재성;황재혁;박상혁;김종혁
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.1-8
    • /
    • 2010
  • In the aerospace field, the study on a morphing-wing is in progress to improve flight performance and perform multi flight mission. There are many concepts of morphing-wing such as camber-change, wing-twist, variable-span, and so on. In this study, the aerodynamic characteristics and flight control of an air vehicle with a variable-span morphing wing (VSMW) have been investigated. VSMW with symmetric span control(SSC) can increase cruising range of aircraft by reducing drag in various flight condition. VSMW with anti-symmetric span control(ASSC) can be used in the roll control of an aircraft. The flight control about pure rolling dynamic system and full dynamic system have been performed about the cruise missile.

대공무기체계 표적거리예측 알고리즘 성능향상에 관한 연구 (A Study on Performance Improvement of Distance Estimation Algorithm for Anti-Aircraft Weapon System)

  • 서승범;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.235-237
    • /
    • 2017
  • 전투무선망을 통해 방공C2A 체계로부터 전송되는 표적거리는 전투무성망의 여러 가지 특성으로 인해 오차가 발생한다. 본 논문에서는 칼만필터를 이용한 거리추정 알고리즘의 성능을 향상 시켜 오차를 최소화할 수 있는 방법을 제안한다.

  • PDF

모듈형 플랫폼을 적용한 자율비행 무인표적기 시스템 개발 (Development of Autonomous Aerial Target System Applying the Modular Platform)

  • 김태욱
    • 한국항공운항학회지
    • /
    • 제30권3호
    • /
    • pp.109-116
    • /
    • 2022
  • A modular platform development technique was proposed to minimize development cost and development period by utilizing the already developed unmanned Aerial target AVT, which has been operated and verified for many years. New Mission Profile was designed and structural analysis was performed through finite element analysis (FEA) by analyzing mission requirements for visual short-range, non-visible mid-range, and long-range targets. The targets are used for guided missile anti-aircraft training. In addition, avionics systems including flight control computers for autonomous flights were developed to verify their conformance by performing launcher take-off tests with rapid acceleration changes and autonomous flight tests at a maximum speed of 300km per hour.

항공기 결빙 보호장치의 기술 현황 및 전망 (Current Status and Prospect of Aircraft Ice Protection Systems)

  • 이재원;조민영;김용환;이관중;명노신
    • 한국항공우주학회지
    • /
    • 제48권11호
    • /
    • pp.911-925
    • /
    • 2020
  • 항공기 결빙 보호장치는 항공기의 Window Shield 및 Engine Inlet, Wing 등에 적용되어 운용 중 발생할 수 있는 항공기와 센서의 표면 결빙으로 부터 항공기를 보호한다. 표면에 증식된 결빙은 항공기의 조종 안정성을 저하시키고 대기자료 프로브의 오작동을 일으킴으로써 심각한 사고의 원인이 되기도 하는데, 이를 방지하기 위하여 다양한 방식의 결빙 보호장치가 개발되었다. Electrothermal 방식은 비교적 간단한 구조이고 에너지 효율을 높이는 데 유리하여 가장 많이 사용되는 항공기 결빙 보호장치로 자리매김하고 있다. 본 리뷰 논문에서는 대표적인 결빙 보호장치인 Hot-air 및 Electro-thermal 방식을 집중적으로 분석하였고, 기술 현황과 적용 사례를 바탕으로 결빙 보호장치의 전망에 대해 고찰하였다.