• 제목/요약/키워드: Anti- inflammatory

Search Result 5,980, Processing Time 0.032 seconds

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis (혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.175-188
    • /
    • 2022
  • Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.

Production of Carotenoids by Bacteria; Carotenoid Productivity and Availability (박테리아에 의한 카로티노이드 생산; 카로티노이드 생산성 및 활용 가능성)

  • Choi, Seong Seok;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.411-419
    • /
    • 2022
  • Carotenoids are red, orange, and yellow fat-soluble pigments that exist in nature, and are known as physiologically active substances with various functions, such as provitamin A, antioxidant, anti-inflammatory, and anticancer. Because of their physiological activity and color availability, carotenoids are widely used in the food, cosmetics, and aquaculture industries. Currently, most carotenoids used industrially use chemical synthesis because of their low production cost, but natural carotenoids are in the spotlight because of their safety and physiologically active effects. However, the production of carotenoids in plants and animals is limited for economic reasons. Carotenoids produced by bacteria have a good advantage in replacing carotenoids produced by chemical synthesis. Since carotenoids produced from bacteria have limited industrial applications due to low productivity, studies are continuously being conducted to increase the production of carotenoids by bacteria. Studies conducted to increase carotenoid production from bacteria include the activity of enzymes in the bacterial carotenoid biosynthesis pathway, the development of mutant strains using physical and chemical mutagens, increasing carotenoid productivity in strain construction through genetic engineering, carotenoid accumulation through stress induction, fermentation medium composition, culture conditions, co-culture with other strains, etc. The aim of this article was to review studies conducted to increase the productivity of carotenoids from bacteria.

The Effects of Ecklonia stolonifera Extracts on Improvement of Hepatic Function: a Double-Blind, Randomized, Placebo-Controlled Clinical Study (곰피추출물의 간기능 개선 효과 평가를 위한 12주, 무작위배정, 이중맹검, 위약-대조 인체적용시험)

  • Kim, Junghee;Kim, Eun Jin;Kang, Dahye;Kim, Hyung-Bin;Jang, Jae Young;Om, Ae-Son;Kim, Jongwook
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.198-205
    • /
    • 2022
  • Hepatic diseases are divided into two types: alcoholic and non-alcoholic. Non-alcoholic liver injury finally induces fatty liver and damages liver function. Many studies have demonstrated that Ecklonia stolonifera has antioxidative, anti-inflammatory, and hepatoprotective activities. We conducted a 12-week double-blind, placebo-controlled, randomized trial to examine the efficacy of E. stolonifera extracts (ESE) on biochemical markers of hepatic function. Sixty-five subjects with mild or moderate liver injuries were randomly allocated to receive either 420 mg/d of ESE or a placebo for 12 weeks. Fifty-five participants completed the trial. No significant adverse events were observed among the subjects during the study. The primary end points were changes in plasma levels of aspartate transaminase (AST), alanine transaminase (ALT), and γ-glutamyltransferase (γ-GT). The secondary end points were changes in lipid profile levels, including total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL). Compared with the baseline, AST and ALT levels decreased significantly in the ESE group compared to those in the placebo group (P<0.001). In addition, γ-GT levels in the ESE group were significantly lower than those in the placebo group (P=0.016). There were no differences in the TC, TG, HDL, and LDL levels between groups. In conclusion, ESE consumption for 12 weeks improved liver parameters in subjects with liver injury. Regular consumption of ESE could maintain liver health in individuals at risk of hepatic damage.

Metabolic Signaling by Adipose Tissue Hormones in Obesity (비만에서 adipose tissue 호르몬에 의한 metabolic signaling)

  • Younghoon Jang
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.287-294
    • /
    • 2023
  • Healthy adipose tissue is critical for preventing obesity by maintaining metabolic homeostasis. Adipose tissue plays an important role in energy homeostasis through glucose and lipid metabolism. Depending on nutritional status, adipose tissue expands to store lipids or can be consumed by lipolysis. The role of adipose tissue as an endocrine organ is emerging, and many studies have reported that there are various adipose tissue hormones that communicate with other organs and tissues through metabolic signaling. For example, leptin, a representative peptide hormone secreted from adipose tissues (adipokine), circulates and targets the central nervous system of the brain for appetite regression. Furthermore, adipocytes secrete inflammatory cytokines to target immune cells in adipose tissues. Not surprisingly, adipocytes can secrete fatty acid-derived hormones (lipokine) that bind to their specific receptors for paracrine and endocrine action. To understand organ crosstalk by adipose tissue hor- mones, specific metabolic signaling in adipocytes and other communicating cells should be defined. The dysfunction of metabolic signaling in adipocytes occurs in unhealthy adipose tissue in overweight and obese conditions. Therapy targeting novel adipose metabolic signaling could potentially lead to the development of an effective anti-obesity drug. This review summarizes the latest updates on adipose tissue hormone and metabolic signaling in terms of obesity and metabolic diseases.

Validation of Asiaticoside as Marker Compound of Centella asiatica Juice and Extract, and Its Antioxidant Activity (병풀(Centella asiatica) 착즙액과 추출물의 Asiaticoside 분석법 검증 및 항산화 활성)

  • Yeon Suk Kim;Hyun Young Shin;Eun Ji Ha;Ja Pyeong Koo;Se Bin Jeong;Gaeuleh Kim;Mi Yeun Joung;Kwang-Won Yu
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.2
    • /
    • pp.93-102
    • /
    • 2023
  • Centella asiatica (C. asiatica) has been widely used in food, cosmetics, and pharmaceutical industry as a functional material. In a previous study, we have investigated not only pharmacological effects such as antioxidative and anti-inflammatory effects, but also analyzed various functional ingredients. In this study, triterpenoids were analyzed using HPLC-DAD to determine marker compounds among functional ingredients. When triterpenoids were analyzed, asiaticoside from C. asiatica was determined as an optimal marker compound. Next, specificity, linearity, limited of detection (LOD), limited of quantification (LOQ), precision, accuracy, and range were evaluated using HPLC-DAD to determine asiaticoside contents in C. asiatica juice and extracts. The specificity was elucidated by chromatogram and retention time using an established analytical method. The coefficient of correlation obtained was 0.9996. LOD was 4.99 ㎍/mL and LOQ was 15.12 ㎍/mL. Intra- and inter-day precision of asiaticoside were determined to be 0.48~1.68% and 0.08~1.09%, respectively. Furthermore, the recovery rate of asiaticoside was 98.88% and the analytical range of Field-70E was determined to be 0.625~10 mg/mL. As a results of evaluating ABTS, DPPH, and FRAP antioxidative effect, Field-70E showed potent antioxidant activities. Results of this study could be used as basic data for quality standardization of C. astiatica juice and extracts.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

Hepatoprotective effect of fermented Schizandrae Fructus Pomace extract and Hoveniae Semen Cum Fructus extract combination mixtures against carbon tetrachloride-induced acute liver injured mice (사염화탄소 유발 급성 간 손상에 대한 발효 오미자박 및 헛개과병 추출물의 혼합 비율에 따른 간 보호효능)

  • Hye-Rim, Park;Kyung Hwan, Jegal;Beom-Rak, Choi;Jae Kwang, Kim;Sae Kwang, Ku
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • Objectives : Present study investigated the hepatoprotective effects and the optimal mixing ratio of fermented Schizandrae Fructus Pomace (fSFP) and Hoveniae Semen Cum Fructus (HSCF) extract combination in carbon tetrachloride (CCl4)-induced acute liver injury mice. Methods : ICR mice were orally administered with 200 mg/kg of fSFP, HSCF and mixtures of fSFP and HSCF [MSH (w:w); 1:1, 1:2, 1:4, 1:6, 2:1, 4:1, 6:1, and 8:1] for 7 consecutive days. Silymarin (100 mg/kg) was administered as a reference drug. 0.5 mL/kg of CCl4 was injected intraperitoneally to induce acute liver injury. Body weight gain, relative liver weight, serum chemistry, histopathological analysis, and hepatic endogenous antioxidants capacities were observed. Results : All diverse combinations of MSH significantly reduced relative liver weight increase by CCl4. In addition, MSH administrations significantly decreased the elevation of serum alanine aminotransferase and aspartate aminotransferase activities by CCl4. Histopathological observation indicated that all MSH treatments significantly reduced the increase of degenerated hepatocytes, inflammatory cell infiltration, and histological activity index score by CCl4. Moreover, all MSH administrations reduced the elevation of malondialdehyde contents, and ameliorated the reduction of hepatic glutathione contents, superoxide dismutase activity, and catalase activity. Among the various mixing ratio of MSH combinations, MSH 1:1 and 2:1 showed the most potent anti-oxidative stress, and hepatoprotective effect. Conclusion : Present results suggest that 1:1 and 2:1 combinations of MSH is promising herbal formulation with the hepatoprotective effect against oxidative stress.

Effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (대황 추출물이 골수유래 대식세포의 파골세포 분화에 미치는 영향)

  • In-A Cho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2023
  • Objectives: This study aimed to investigate the effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (BMMs). Osteoclasts are vital for bone resorption and remodeling. Osteoclast dysregulation can contribute to various bone-related disorders that directly affect oral health. Rhubarb, a medicinal plant with anti-inflammatory properties, has been shown to modulate bone metabolism. Methods: BMMs were isolated from the femurs and tibias of 5-week-old C57BL/6 mice and cultured in the presence of mouse macrophage colony-stimulating factor (M-CSF) for 3 days. Subsequently, BMMs were treated with M-CSF and receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation. Results: Rhubarb extract effectively suppressed osteoclast differentiation in BMMs. Furthermore, rhubarb extract inhibited the mRNA expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK), which are essential for osteoclastogenesis. Moreover, it inhibited the RANKL-induced expression of nuclear factor of activated T cell c1 (NFATc1), a crucial transcription factor in osteoclast differentiation. Conclusions: These results suggest that rhubarb extract promotes oral health by inhibiting osteoclastogenesis in BMMs. Thus, rhubarb extract shows promise as a therapeutic agent for bone-related disorders that directly affect oral health, particularly those associated with abnormal osteoclast activity. Further research and exploration of the underlying mechanisms are warranted to fully understand their potential clinical applications.

Components and Pharmaceutical Effect of Beverage Extracted from Sugar-treated Tartary buckwheat (타타리메밀 당절임 추출음료의 성분 및 약리효능)

  • Park, J.J.;Chang, K.J.;Seo, G.S.;Lee, H.S.;Lee, G.S.;Park, C.H.;Lee, M.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • Tartary buckwheat is one of specialized plants in Pyeongchang county, Korea and contains rutin much more than common buckwheat. Rutin is a kind of flavonoid (polyphenol compound) that has effects on blood vascular disease, strengthen capillary, and anti-inflammatory effect. This study was conducted to determine the possibility of development of beverage extracted from sugar-treated plants and sprouts of tartary buckwheat. By using two types of undiluted solution extracted from plant and sprouts of tartary buckwheat, we analyzed their nutrition components and did experiment on mice to find out pharmaceutical effects. In an experiment on mice, we administered various concentration of buckwheat to induced diabetic mellitus mice for 1 weeks. As a result, the buckwheat effected finely on lowering blood sugar and decreased LDL-cholesterol and total lipid level but increased HDL-cholesterol level.

High-level Expression and Characterization of the Human Interleukin-10 in the Milk of Transgenic Mice

  • Zneng, Z. Y.;B. H. Sohn;K. B. Oh;W. J. Shin;Y. M. Han;Lee, K. K.
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.46-46
    • /
    • 2003
  • Interleukin-10 (IL-10) is a homodimeric protein with a wide spectrum of anti-inflammatory and immune activities. It inhibits cytokine production and expression of immune surface molecules in various cell types. The transgenic mice carrying the human IL-10 gene in conjunction with the bovine $\beta$-casein promoter produced the human IL-10 in milk during lactation. Transgenic mice were generated using a standard method as described previously. To screen transgenic mice, PCR was carried out using chromosomal DNA extracted from tail or toe tissues with a primer set. In this study, stability of germ line transmission and expression of IL-10 gene integrated into host chromosome were monitored up to generation F15 of a transgenic line. When female mouse of generation F9 was crossbred with normal male, generation F9 to F15 mice showed similar transmission rates (66.0$\pm$20.13%, 61.5$\pm$16.66%, 41.1$\pm$8.40%, 40.7$\pm$20.34%, 61.3$\pm$10.75%, 49.2$\pm$18.82%, and 43.8$\pm$25.91%, respectively), implying that the IL-10 gene can be transmitted stably up to long term generation in the transgenic mice. For ELISA analysis, IL-10 expression levels were determined with an hIL-10 ELISA and a mIL-10 ELISA kit in accordance with the supplier's protocol. Expression levels of human IL-10 from milk of generation F9 to F13 mice were 3.6$\pm$1.20 mg/ml, 4.2$\pm$0.93 mg/ml, 5.7$\pm$1.46 mg/ml, 6.3$\pm$3.46 mg/ml, and 6.8$\pm$4.52 mg/ml, respectively. These expression levels are higher than in generation F1 (1.6 mg/ml) mice. We concluded that transgenic mice faithfully passed the transgene on their progeny and successively secreted target proteins into their milk through several generations, although there was a little fluctuation in the transmission frequency and expression level between the generations.

  • PDF