• Title/Summary/Keyword: Anti lock brake system

Search Result 60, Processing Time 0.039 seconds

Development and Performance Evaluation of ESP Systems for Enhancing the Lateral Stability During Cornering (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가)

  • Boo Kwang-Suck;Song Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1276-1283
    • /
    • 2006
  • This study proposes two ESP systems which are designed to enhance the lateral stability of a vehicle. A BESP uses an inner rear wheel braking pressure controller, while a EBESP employs an inner rear wheel and front outer wheel braking pressure controller. The performances of the BESP and EBESP are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability and stability of the vehicle. However EBESP enhances the lateral stability and comfort. A driver model is also developed to control the steer angle input. It shows good performances because the vehicle tracks the desired lane very well.

A Development of Effective Educational Simulator for Electronic Control System of Automobile Chassis (섀시 전자제어 시스템의 효과적인 교육을 위한 능동형 시뮬레이터의 개발)

  • Son, Il-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3326-3333
    • /
    • 2012
  • In this paper, an educational simulator of automobile chassis electronic control system was developed. The developed system is composed of three parts, a driving condition control & monitoring system, a chassis electronic system monitoring & analysis system, and a virtual simulator & educational multimedia contents. The driving condition control & monitoring system has a commercial real car simulator, hydraulic equipments for representing driving conditions, and a remote control and monitoring system. In the chassis electronic system monitoring & analysis system, information of various sensors and actuators applied to the system can be monitored by Labview programs. Finally, the suggested virtual simulator and the multimedia with 2D Flash and 3D animations can be used effectively by means of teaching materials.

A Study of ADS Slip Ratio Control using Solenoid Valve (전자밸브를 이용한 ABS 슬립율 제어에 관한 연구)

  • Choi, Jong-Hwan;Kim, Sung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF

Vehicle Longitudinal Velocity Estimation on Inclined Road (경사진 노면에서의 차량의 종 속도 추정)

  • Lee, Sang-Yeob;Kim, In-Keun;Lee, Dong-Hun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

Validation of a Vehicle Model and an ABS Controller with a Commercial Software Program (상용 소프트웨어를 이용한 차량 모델 및 ABS 제어기의 성능 평가)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.180-187
    • /
    • 2007
  • This paper presents a mathematical vehicle model that is designed to analyze the dynamic performance and to develop various safety control systems. Wheel slip controllers for ABS is also formulated to improve the vehicle response and to increase the safety on slippery road. Validation of the model and controller is performed by comparison with a commercial software package, CarSim. The result shows that performances of developed vehicle model are in good accordance with those of the CarSim on various driving conditions. Developed ABS controller is applied to the vehicle model and CarSim model, and it achieves good control performance. ABS controller improves lateral stability as well as longitudinal one when a vehicle is in turning maneuver on slippery road. A driver model is also designed to control steer angle of the vehicle model. It also shows good performance because the vehicle tracks the desired lane very well.

A Study of Magnetic Properties of 410L Stainless Steel for Manufacture of ABS Sensor Ring (410L 스테인레스 강의 ABS센서 링 제조를 위한 자기적 특성에 관한 연구)

  • Yang, H.S.;Kwak, C.S.;Rhim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.241-246
    • /
    • 1998
  • It is well known for 410L ferritic stainless steel powder to applicate a sensor ring in anti-lock brake system of automobile, several studies, because of its excellent magnetic properties. This study was carried out to investigate the magnetic properties such as the maximum magnetic induction, coercivity and maximum permeability of the materials with functions of sintering density, time and temperature, and concluded as follows: 1. Sintering under the circumstances of Ar gas and the temperature of $1250^{\circ}C$ for 60min, showed that nitrogen was increased, whereas carbon and oxygen decreased in quantities. 2. Both maximum magnetic induction value of 4700Gauss and permeability of 200 were obtained at the maximum sintering density of $6.89g/cm^2$. Here, the properties showed a linear increasement with increasing the sintering density. 3. Coercivity sharply decreased with incresing the sintering density and reached to 7.6Oe at the maximum sintering density of $6.89g/cm^2$.

  • PDF

Braking Distance Estimation using Frictional Energy Rate (마찰에너지율을 이용한 타이어 제동거리 예측)

  • Jeon, Do-Hyung;Choi, Joo-Hyung;Cho, Jin-Rae;Kim, Gi-Jeon;Woo, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

Design and Evaluation of AFS and ARS Controllers with Sliding Mode Control and Fuzzy Logic Control Method (Sliding Mode Control 및 Fuzzy Logic Control 방법을 이용한 AFS 및 ARS 제어기 설계 및 성능 평가)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.72-80
    • /
    • 2013
  • This study is to develop and evaluate an AFS and an ARS controllers to enhance lateral stability of a vehicle. A sliding mode control (SMC) and a fuzzy logic control (FLC) methods are applied to calculate the desired additional steering angle of AFS equipped vehicle or desired rear steer angle of ARS equipped vehicle. To validate AFS and ARS systems, an eight degree of freedom, nonlinear vehicle model and an ABS controllers are also used. Several road conditions are used to test the performances. The results showed that the yaw rate of the AFS and the ARS vehicle followed the reference yaw rate very well within the adhesion limit. However, the AFS improves the lateral stability near the limit compared with the ARS. Because the SMC and the FLC show similar vehicle responses, performance discrimination is small. On split-${\mu}$ road, the AFS and the ARS vehicle had enhanced the lateral stability.

Research on Correlation Method of ABS Interior Operational Noise via HILS Rig Test (HILS Rig 시험을 통한 실차 ABS 실내작동소음 예측 기법에 대한 연구)

  • Kim, Seunghwan;Yook, Jiyong;Han, Mingyu;Jeon, Namill
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.483-488
    • /
    • 2013
  • The psychoacoustic quality of ABS is now considered more important than before as the focus of recent ABS function is expanded to basic function from typical emergency function. Thus, the automotive parts manufacturing companies are actively working to improve NVH (Noise, Vibration, and Harshness) in ABS module. In terms of time, test place, and cost, however, it is very inefficient to have all the operating noise validation test in real vehicle configuration especially for partially improved ABS module. To contribute to reducing the development period and to grasping the improvements faster, this research presents the study of a correlation to predict ABS operating noise inside vehicle via HILS rig test. The regression equation in this paper was statistically drawn from using Minitab S/W, and based on that equation, the noise spectrum of vehicle interior was analogized.

  • PDF

Implementation of DAS for Performance Analysis of Heavy-Vehicle ABS (대형 차량용 ABS의 성능분석을 위한 DAS 구현)

  • Lee, Ki-Chang;Jeon, Jung-Woo;Nam, Taek-Kun;Hwang, Don-Ha;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2373-2375
    • /
    • 2002
  • 전자 제어식 미끄럼 방지 제동 장치(ABS, Anti-lock Brake System)를 장착한 차량의 실차 제동 시험은 시험용 차량을 비롯하여, 많은 분석장비를 필요로 한다. 이러한 고가의 장비는 구하기가 어려울 뿐만 아니라 사용방법을 학습하는 데에도 상당한 기간을 필요로 하므로, 개발중인 ABS에 대하여 적용해 보기에는 그 사용에 제약을 받는다. 본 논문에서는 개발중인 미끄럼방지 제동 알고리즘과 전자제어장치(ECU, Electronic Control Unit)를 대형 버스에 장착하여, 저 점착 노면에서 주행 시험을 시행하였고, 그 주행 기록의 분석을 위하여 DAS(Data Acquisition System)를 구현하였다. 개발 ABS 알고리즘 및 ECU의 기능과 성능 검증이 목적인 DAS는 부가적인 센서 및 고가의 장비를 사용하지 않고 제어보드와 휴대용 노트북 컴퓨터를 이용하였다. 고정밀도의 자료를 획득할 수는 없었지만, 개발 DAS를 이용한 차량 실차 제동 시험은 경제적이면서도 효과적인 ECU 및 알고리즘의 성능 분석을 이룰 수 있었다. 특히 개발 DAS는 제어 및 Data Acquisition을 동일한 보드를 사용하여 구현함으로써, ABS 장착 실차 주행 시험 결과를 제어알고리즘에 즉각적으로 반영시킨 수 있었다. 이러한 One Board System 및 On-Vehicle Programming을 이용한 방법은 개발 알고리즘의 빠른 Debugging 및 파라미터 조정(Tuning)을 가능하게 하였으므로, 실차 제동 시험을 위한 한정된 기간 내에 개발 ABS ECU 및 제어 알고리즘의 성능을 효과적으로 검증할 수 있었다.

  • PDF