• Title/Summary/Keyword: Anti fuzzy point

Search Result 6, Processing Time 0.02 seconds

GENERALIZED ANTI FUZZY SUBGROUPS

  • Jun, Young-Bae;Song, Seok-Zun
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.195-205
    • /
    • 2006
  • Using the notion of anti fuzzy points and its besideness to and non-quasi-coincidence with a fuzzy set, new concepts of an anti fuzzy subgroup are introduced and their inter-relations are investigated.

  • PDF

GENERALIZED CUBIC FUNCTIONS ON A QUASI-FUZZY NORMED SPACE

  • Kang, Dongseung;Kim, Hoewoon B.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.29-46
    • /
    • 2019
  • We introduce a generalized cubic functional equation and investigate the Hyers-Ulam stability of the cubic functions as solutions to the generalized cubic functional equation on a quasi-fuzzy anti-${\beta}$-Banach space by both the direct method and the fixed point method.

Design of GA-Fuzzy Controller for Position Control and Anti-Swing in Container Crane (컨테이너 크레인의 위치제어 및 흔들림 억제를 위한 GA-퍼지 제어기 설계)

  • 허동렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.16-21
    • /
    • 2000
  • In this paper we design a GA-fuzzy controller for position control and anti-swing at the destination point. Applied genetic algorithm is used to complement the demerit such as the difficulty of the component selection of fuzzy controller namely scaling factor membership function and control rules. lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling. Simulation results show that the proposed control technique is superior to a conventional optimal control in destination point moving and modification.

  • PDF

Design of a Fuzzy Controller for Position Control and Anti-Swing in Container Crane Systems Using Genetic Algorithms (유전알고리즘을 이용한 컨테이너 크레인 시스템의 위치제어 및 흔들림 억제를 위한 퍼지 제어기 설계)

  • 정형환;허동렬;오경근;주석민;안병철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.53-60
    • /
    • 2000
  • In this paper, we design a GA-fuzzy controller for position control and anti-swing at the destination point. A genetic algorithm is used to complement the demerits such as the difficulty of the component selection of the fuzzy controller, namely, scaling factors, membership functions and control rules. Lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling. Simulation results show that the proposed control technique is superior to a conventional optimal control in destination point moving and modification.

  • PDF

A Study on the stabilization of Crane system using GA-fuzzy controller (GA-퍼지 제어기를 이용한 크레인의 안정화에 관한 연구)

  • Oh, K.G.;Hur, D.R.;Joo, S.M.;Chung, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2473-2475
    • /
    • 2000
  • In this paper, we design a GA-fuzzy controller for position control and anti-swing at the destination point. Applied genetic algorithm is used to complement the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling.

  • PDF

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.