• 제목/요약/키워드: Anthracite coal

검색결과 121건 처리시간 0.026초

TGA에 의한 유.무연탄의 연소특성과 활성화에너지 비교 (Combustion Characteristics and Activation Energy From Thermogravimetric Analysis of Bituminous and Anthracite Coal)

  • 김성철;최병선;이현동;홍성선
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.170-175
    • /
    • 1996
  • 국내 석탄화력발전소에서 사용되고 있는 3종류의 유연탄 및 무연탄에 대해 입자 크기와 CaCO$_3$ 주입에 따른 TGA 분석을 수행하고 활성화에너지를 구하였다. 유연탄의 무게감량 시작온도는 360-38$0^{\circ}C$로 무연탄의 570~$600^{\circ}C$보다 20$0^{\circ}C$정도 낮았다. 유연탄의 활성화에너지는 입도 및 탄종에 따라 14~20kcal/mole 범위이고 무연탄은 37~55 kcal/mole로서 무연탄이 유연탄보다 활성화에너지가 매우 높았다. 석탄의 입도크기가 작아질수록 활성화에너지는 감소하였고 무게감량율과 활성화에너지값은 상관관계가 있었다. 유 무연탄의 유황분대 CaCO$_3$비율을 1:1로 주입시 유연탄은 활성화에너지 변화가 작았으나 무연탄의 경우 1~23 kcal/mole 정도로 활성화에너지가 감소하였다.

  • PDF

국내 석탄회 육상매립의 오염 잠재성 평가 (Assessment of potential environmental impact from fly ash landfill)

  • 이상훈
    • 환경영향평가
    • /
    • 제8권4호
    • /
    • pp.25-35
    • /
    • 1999
  • Fly ash, by-product from coal fired power station, has long been regarded as a potential contamination source for heavy metals and inorganics due to their enriched concentrations and associations with particle surface. Feed coal and fly ash samples were collected from two power stations; Yongdong deliang with domestic anthracite coals and Boryong with imported bituminous coals. The coal and fly ash samples were analyzed for chemical composition and mineral components, using XRF and XRD. Batch leaching experiments were conducted by agitating samples with deionised water for 24 hours. Anthracite coals are generally higher in Al and Si contents than bituminous coals. This is due to the higher ash contents of the anthracite coal than bituminous coal. The chemistry of the two fly ash samples shows broadly similar compositions each other, except for the characteristically high contents of Cr in anthracite coal fly ash. Leaching experiments revealed that concentrations of metals gradually decreased with leachings in general. However, measurable amounts of metals were present in the effluent from weathered ash and the samples subjected to the leaching procedure. These metals are likely to indicate that the metals in fly ash were incorporated into glass fraction as well as associated with particle surface of samples. Dissolution of aluminosilicate glass would control releasing heavy metals from fly ash as weathering progresses during landfill with implication of possible groundwater contamination through fly ash landfill.

  • PDF

석탄회 시용이 연초의 수량 및 품질에 미치는 영향 (Effect of Fly Ash on the Yield and Quality of Tobacco)

  • 홍순달;석영선
    • 한국연초학회지
    • /
    • 제19권2호
    • /
    • pp.92-101
    • /
    • 1997
  • This study was conducted to investigate the effect of fly ash on the yield and quality and to determine the optimum application amount of fly ash for tobacco(Nicotiana tabacum L). Two kinds of fly ash, anthracite and bituminous coal, were treated with different levels of 0, 20, 40, 60 MT/ha. Dry weights of tobacco at middle and topping growth stage were increased with application of fly ash, showing the highest dry weight at 40 MT/ha in both kinds of fly ash. It was showed that the bituminous coal had a little more effective for yield than that of anthracite. Comparing with the control, yields of tobacco applied with fly ash were significantly increased about 17.7% and 17.1% by the application of bituminous coal and anthracite, respectively. Quality of flue-cured leaves was better by application of fly ash than that of the control. The quality index was given the highest at 40 MT/ha for bituminous coal increasing by 24.6% and at 60 MT/ha fur anthracite increasing by 13.4% compared with the control. The economical efficiency considered of the yield and quality of tobacco was the highest at 40 MT/ha of bituminous. Soil pH, contents of available P2O5, organic matter, exchangeable Ca2+ and Mg2+ of soil during the growing season were increased by application of fly ash, showing more effectiveness in bituminous than that in anthracite. By the application of fly ash, the nutrients availability and the acidity of soil were reformed and they caused significantly the increase of growths yield, and quality of tobacco. By the application of lime reforming soil acidity, growth response, yields and quality of tobacco were not increased compared to the control, although the effect of reforming soil pH was remarkable.

  • PDF

무연탄 혼소 500 MW 석탄화력발전소에서 보일러 운전조건이 미연탄소 발생에 미치는 영향 (Effect of Boiler Operating Conditions on the Generation of Unburned Carbon in Anthracite Co-fired 500 MW Thermal Power Plant)

  • 남정철;유호선
    • 플랜트 저널
    • /
    • 제14권3호
    • /
    • pp.35-41
    • /
    • 2018
  • 최근 북한에 대한 정부정책 기조와 북한의 전력설비 상황을 고려할 때 북한 무연탄을 우리나라 석탄화력발전소에서 소비할 수 있도록 그에 대한 대비가 필요할 것이다. 본 연구에서는 500 MW 석탄화력발전소에서 보일러 내 무연탄 주입위치, 미분도 및 연소용 공기유량 등 주요 운전조건을 변화시키면서 미연탄소 발생에 미치는 영향을 파악하기 위한 무연탄 혼소시험을 실시하였다. 주연소영역 체류시간이 상대적으로 긴 보일러 하부로 무연탄을 주입할 때 미연탄소 발생이 현저히 감소하고, 연소반응 표면적과 비례하는 미분도를 증가시켜도 미연탄소 발생이 감소하는 것을 확인하였다. 연소반응성을 증가시키는 공기유량의 증가도 미연탄소 저감에 기여한다. 주어진 혼소율에 대하여 상기의 운전조건 조절을 통하여 미연탄소 발생을 석탄회 재활용 품질기준인 5 % 이하로 유지하는 것이 가능하며, 시험범위 내에서 운전조건 변경의 우선 순위는 무연탄 주입위치가 가장 높다.

  • PDF

국내무연탄층에 함유된 메탄자원의 잠재력과 그 이용가능성 (Coalbed methane potential for Korean anthracite and possibility of its utilization)

  • 박석환
    • 자원환경지질
    • /
    • 제32권1호
    • /
    • pp.113-121
    • /
    • 1999
  • Coal is both source rock and reservoir rock for the coalbed gas. Coalbed gas. Coalbed gas is predominantly methane and has a heating value of approximatly 1000 BTU/$ft^3$. Most of methane is stored in the coal as a monomolecular layer adsorbed on the internal surface of the coal matrix. The amount of methane stored in coal is related to the rank and the depth of the coal. THe higher the coal rank and the deeper the coal seam is presently buried, the greater its capacity to hold gas. Most of Korean Coal is anthracite or metaanthracite, Ro. 3.5~5.5%, and total reserves are 1.6 billion metric tons. The domestic demand for coal was drastically decreased and the rationalization policy carried out from 1987 on coal industry. Now that a large number of coal mines was closed only a few mines continued to produce not more than 5 million tons for year. It is therefore recommended to formulate a strategy to explore and exploit the resources of coalbed methane in Korea.

  • PDF

석탄을 이용하여 제조한 상수처리용 활성탄과 상업용 활성탄의 물성특성 분석 (Analysis of physical properties of activated carbon for water purification made by using coal and commercial activated carbon)

  • 최동훈;김종수;안철우;이철승;박진식
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.48-54
    • /
    • 2002
  • In this study, the physical properties of coal-based(bituminous, anthracite·bituminous) activated carbon were compared with those of four different commercial activated carbon used for water treatment. In case of bituminous coal and blend coal, the results of SEM analysis indicated that more pore was extended and shaped in activation process than carbonization process. The results of BET analysis indicated that specific surface area of P Co. activated carbon was larger than the others, and C Co. activated carbon, S Co. activated carbon and anthracite + bituminous was similar. Therefore, adsorption capacities and breakthrough time of anthracite + bituminous regarded similar to C Co. activated carbon.

Co-combustion of Bituminous Coal with Anthracite in a Down-firing, 200 MW Boiler

  • Park, Ho Young;Baek, Se Hyun;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyun Hee;Lim, Hyun Soo;Park, Yoon Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.93-97
    • /
    • 2015
  • The combustion tests for Korean anthracite-bituminous coal blend were carried out in the 200 MW utility boiler. The burning characteristics of the blend were studied with a thermogravimetric analyzer (TGA). From the observation of TGA burning profiles, it was found that the presence of bituminous coal in the blend appeared to enhance the reactivity of anthracite in the higher temperature region, indicating certain interactions between the two coals. The plant test showed the boiler operation was reasonably stable with somewhat poor combustion efficiency, and some modification of the combustion environment in the furnace is necessitate for the further stable plant operation.

화학폐수슬러지와 무연탄을 이용한 복합건조공정의 조사시간에 따른 고형연료의 특성 평가 (Characteristic Evaluation of RDF for the Combined Drying Produced by Weight Mixing Ratio Use Chemical Wastewater Sludge and Anthracite Coal)

  • 이승철;정진희;이준희
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.417-424
    • /
    • 2016
  • The objective of this study was to evaluate the microwave drying characteristics of mixtures of chemical wastewater sludge (70~90%) and anthracite coal (10~30%) with respect to physical and economic factors such as mass, volume reduction, moisture content, drying rate and heating value when the wastes were dried at different weight mixing ratio and for different microwave irradiation time. The drying process were carried out in a microwave oven, the combined drying process with a 2,450 MHz frequency and 1 kW of power. Maximum dry rates per unit area on the microwave drying of mixtures with chemical wastewater sludge and anthracite coal were $35.5kg\;H_2O/m^2{\cdot}hr$ for Cs90-Ac10; $40.1kg\;H_2O/m^2{\cdot}hr$ for Cs80-Ac20 and $35.0kg\;H_2O/m^2{\cdot}hr$ for Cs70-Ac30. The result clearly indicated that moisture can be effectively and inexpensively removed from the wastes through use of the microwave drying process.

국내 무연탄 발전소 역청탄 사용시 탈황 특성 연구 (Desulfurization Characteristics for Anthracite Coal Power Plant by Increasing Bituminous Coal Fuel)

  • 김정유;문승재;이재헌
    • 플랜트 저널
    • /
    • 제4권4호
    • /
    • pp.71-77
    • /
    • 2008
  • The sulfur oxides is one of important materials to come about air pollution at thermal plant consuming fossil fuel. The several flue gas desulfurization equipments are installed and operated to decrease sulfur oxides. The flue gas desulfurization of our thermal plant is designed for optimizing flue gas desulfurization technical development and research by Korea Electric Power Research Institute. We operate this desulfurization equipment. Now, our country imports nearly 97 percentage of the energy source and competes with the world for the energy because of the sudden rise of raw materials cost. The fuel cost decrease of power plants is the most important factor of the operation. The fuel used in the experiment is the domestic anthracite from Kangwon Taeback and the bituminous coal from Taldinsky Mine in Russia. This Study is experimental investigations of desulfurization characteristics for domestic anthracite power plant by increasing bituminous coal. We surveyed possible parameters and conducted the performance about desulfurization equipment in Yong Dong thermal power plant.

  • PDF

無煙炭의 反應成에 關한 硏究 (第1報) 反應成 試驗藏置의 試作 (Studies on the Reactivity of Korean Anthracites. (Part 1) Setting-Up of an Apparatus for Testing the Reactivity of Korean Anthracites)

  • 한태희;이재성;신성식
    • 대한화학회지
    • /
    • 제6권1호
    • /
    • pp.47-53
    • /
    • 1962
  • The "reactivity" of coal is one of the important characteristics of a coal used as a process raw material as well as a fuel. In this study, the reactivity was measured in terms of the magnitude of the reaction rate constant in the reduction of carbon dioxide with coal. A reactivity-testing apparatus was designed and constructed, and its performance characteristics were investigated by using Korean anthracite and hard-wood charcoal. Experiments were carried out at temperatures ranging from 750 to 1100$^{\circ}C$ with pulverized Korean anthracite whose sizes range from 1 to 10mm in diameter. Results showed that the reaction rate constant was not appreciably affected by the particle size investigated, and the reactivities of the anthracite and the charcoal were found to be a function of reaction temperature alone. It was also found that a straight line was produced when the logarithm of the rate constant is plotted against the reciprocal of the absolute temperature. The reactivities of the charcoal were found to be 2 to 10 times higher than those of the anthracite at a temperature ranging from 750 to 1100$^{\circ}C$, and 90% of carbon dioxide was reduced to carbon monoxide by the anthracite at a temperature above 1050$^{\circ}C$.

  • PDF