• Title/Summary/Keyword: Antenna size-reduction

Search Result 96, Processing Time 0.024 seconds

Study on Back-Radiation level Improvement of IFF Antenna for Surveillance Radar (탐색레이더용 피아식별안테나 후방 방사 수준 개선에 관한 연구)

  • Kim, Young-Wan;Chae, Heeduck;Park, Jongkuk;Lee, Dong-Kook;Jeong, Myung-Deok;Han, In-Hee;Lee, Du-Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this paper, we described the study on back-radiation level improvement of IFF antenna after briefly describing a design of IFF antenna to distinguish the target as the sub-antenna of surveillance radar. The proposed IFF antenna was minimized a size with use all-in-one power divider as a two-channel IFF antenna forming sum and difference pattern. The method for back-radiation level reduction was studied, and the identified method through the simulation confirmed the decrement throught the measurement.

A Study on Coupling Coefficient and Resonant Frequency Controllable Internal PIFA (결합계수 및 공진 주파수 조절이 가능한 내장형 PIFA에 관한 연구)

  • Lee, Sang-Hyun;Lee, Moon-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.99-104
    • /
    • 2010
  • In this paper, the internal antenna for mobile communication handset which is able to control both coupling coefficient and resonant frequency without any major modification of radiator and ground plane of PIFA(Planner Inverted F Antenna). The resonant frequency as well as amount of coupling between feeding point and shorting post can be adjusted by changing inductance. Because the inductor is connected on shorting post where the strength of electric field is weak, the performance reduction of the proposed antenna is very small enough to neglect. For the variation of the inductance value within 3.3nH, the resonant frequency of antenna can have operating range of 1650MHz ~ 1830MHz. And as be increased the inductance, the coupling coefficient of antenna is over coupled. This means that it can be electrically controlled the resonant frequency and input impedance of antenna by inductance and minimized the mismatch loss. Size reduction of 10% for PIFA is obtained without any major modifications of antenna elements. For the frequency range from 1650 to 1830MHz, reduction of the measured antenna gain is within 0.93dB as varying the value of inductance from 0 to 3.3nH.

Design of a broadband half bow-tie dipole antenna for digital TV Reception (디지털 TV 수신용 광대역 반 보우타이 다이폴 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.61-62
    • /
    • 2013
  • In this paper, a design method for a compact broadband planar dipole antenna fed by a microstrip (MS) line is studied. The proposed broadband dipole is optimized for terrestrial digital television (DTV) receiving. The dipole is fed by an MS line with 75-ohm characteristic impedance on an FR4 substrate and its size is $90mm{\times}180mm$. The dipole is modified to half bow-tie type for size reduction. A simplified balun is adopted for the impedance matching between the MS line and coplanar strip which feeds the dipole. The optimized dipole antenna for DTV band (470-806 MHz) is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Broad Band Microstrip Antenna with Saw Tooth Perturbations for Polarization Diversity (톱니 모양의 Perturbation을 갖는 편파 Diversity 용 광대역 마이크로스트립 안테나)

  • 김태홍;노근식;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.505-513
    • /
    • 2000
  • This study suggests new antenna design for polarization diversity. For dual polarization, two port feeding lines are printed on two separate layers and cross-shaped aperture is located on ground between the substrates. For reducing back radiation, a reflector is attached around $\lambda$/4 behind feeding substrates. For wide bandwidth we use a perturbed patch with saw tooth shaped. This perturbation effect causes reduction of antenna size and also reduction of array size. With the antenna proposed here, $1\times4$ array dual polarization antenna for polarization diversity of PCS base station is built. One single element has as large as 10.3%, 11.3% bandwidths at each port, V.S.W.R less than 1.3 and the isolation is less than -40 dB, also array antenna has 13.2% 12.7% band bandwidth, V.S.W.R less than 1.3 the isolation below -36dB and the XPD of 10 dB.

  • PDF

Investigating Electromagnetic Power Transfer Ratio of Circular Polarizing Planar Metasurface Lens

  • Lee, ChangHyeong;Han, DaJung;Khattak, Muhamad Kamran;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • We designed an antenna structure with the circular polarization metamaterial superstrate which increases the directivity of the primary antenna as a lens. The metamaterial superstrate removes the necessity of the array antenna and complicated feed. Plus, it provides the Fabry-perot cavity with the circular polarization. With regard to the primary antenna, a CRLH antenna is adopted to have the size-reduction from the conventional half-wavelength patch antenna.

Aperture-Miniaturized Antenna Loaded with Split Ring Resonator Array

  • Oh, Soon-Soo;Park, Wook-Ki;Kang, Suk-Youb;Park, Hyo-Dal
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.315-317
    • /
    • 2009
  • In this letter, a novel antenna with a miniaturized aperture is proposed. The substrate including a split-ring resonator array is inserted into a size-reduced open-ended waveguide. For a low return loss and high radiation efficiency, the ring arrangement is optimized, and a stepped transition using H-plane discontinuity is proposed. The proposed antenna achieves a 70% aperture reduction compared to a conventional standard waveguide antenna of WR-187 (47.6 mm${\times}$22.2 mm). The return loss drops significantly at three frequencies, and a reasonable gain is achieved. The aperture-miniaturized antenna can be used in many antenna applications such as near-field measurement.

  • PDF

An RFID Tag Using a Planar Inverted-F Antenna Capable of Being Stuck to Metallic Objects

  • Choi, Won-Kyu;Son, Hae-Won;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.216-218
    • /
    • 2006
  • This letter presents the design for a low-profile planar inverted-F antenna (PIFA) that can be stuck to metallic objects to create a passive radio frequency identification (RFID) tag in the UHF band. The designed PIFA, which uses a dielectric substrate for the antenna, consists of a U-slot patch for size reduction, several shorting pins, and a coplanar waveguide feeding structure to easily integrate with an RFID chip. The impedance bandwidth and maximum gain of the tag antenna are about 0.3% at 914 MHz for a voltage standing wave ratio (VSWR) of less than 2 and 3.6 dBi, respectively. The maximum read range is about 4.5 m as long as the tag antenna is on a metallic object.

  • PDF

Parameter Selection Procedure of Parabolic Reflector Antenna for the Optimum Synthetic Aperture Radar Performances

  • Yoon, Seong Sik;Lee, Jae Wook;Lee, Taek Kyung;Yi, Dong Woo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.251-258
    • /
    • 2013
  • A procedure for antenna parameter selections is proposed that considers the relationships between synthetic aperture radar performance and the antenna parameters of a parabola-type reflector antenna with a central flat dish. The effects of a central dish designed for weight reduction on the antenna beam pattern are also quantitatively analyzed using commercially available software based on the physical optics algorithm. The results of the theoretical analysis and simulation predict that a larger size of the central dish results in an increase in the sidelobe level, which is the reason for the increase in two important ambiguities, such as range ambiguity ratio (RAR) and azimuth ambiguity ratio (AAR). The dependence of RAR and AAR on Pulse repetition frequency is also analyzed and discussed.

Wideband Conformal Antenna for Endoscopic Capsule Application (캡슐 내시경에 응용 가능한 광대역 컨포멀 안테나)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.923-926
    • /
    • 2017
  • In this study, a novel wideband conformal thin antenna is presented for endoscopic capsule application at the 915 MHz Industrial, Scientific and Medical (ISM) band. The thickness of the antenna is only 0.2 mm which can be wrapped inside a capsule's inner wall. By cutting meandered slots on patch, open end slots on ground and utilizing long arm, the proposed antenna can obtain significant size reduction. The net volume of the proposed antenna including substrate and superstrate is only $37.4mm^3$ ($187mm^2$ surface area). This conformal antenna has shown good performance through simulation and measurement with maximum gain of -23 dBi and wide bandwidth from 137 MHz - 205 MHz depending on different environment. In addition, the effect of internal materials specially metallic battery is discussed briefly.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF