• Title/Summary/Keyword: Antenna Substrate

Search Result 581, Processing Time 0.03 seconds

HTS antenna array with circularly polarization for DBS receiver (직접 위성방송 수신용 원편파 HTS 배열 안테나)

  • 정동철;윤희중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.294-297
    • /
    • 2003
  • In this paper we designed and measured HTS antenna array for Direct Broadcast Satellite (DBS) system. HTS antennas fabricated in this work were a four-element, 11.67 ㎓z, high-Tc superconducting (HTS) microstrip antenna array with corporate feed network and circular polarization for direct broadcas- ting satellite (DBS) system. Our antennas was designed and built on a 0.5 mm thick YBa2Cu3O7-x (YBCO) /MgO substrate. The measurement results showed good axial ratio, wide bandwidth a remarkable improvement over their metal counterpart.

  • PDF

The Design and Fabrication of Antennae for GPS using Dialectic Ceramic (유전체 세라믹을 이용한 GPS용 안테나의 설계 및 제작)

  • 허영규;이헌영;윤중락;권정열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.153-157
    • /
    • 1997
  • This paper presents a patch antenna design method using microwave dielectric ceramic substrate. Before manufactirung the GPS(Global Positioning System)antenna such contents as input impedence resonent frequency and quality factor and efficiency are surveyed theolitically for design and parameters for manufacturing the antenna are found.

  • PDF

CPW-fed Quasi-Yagi Antenna for UHF RFID and GPS Bands (코플래너 도파관으로 급전되는 UHF RFID 및 GPS 대역용 준-야기 안테나)

  • Lee, Jong-Ig;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.63-64
    • /
    • 2017
  • In this paper, we studied a design method for a coplanar waveguide-fed compact quasi-Yagi antenna for a dual band of the UHF RFID (915 MHz) and GPS (1.575 GHz). The proposed antenna is composed of three elements of a dipole, a reflector, and a director. To reduce its size, the ends of both the dipole and reflector are bent, the director is placed near to the dipole, and a balun is incorporated in the antenna. From some simulations, the proposed antenna using an FR4 substrate with 0.8 mm thickness was designed for the operations in the UHF RFID and GPS systems, and the antenna characteristics such as reflection coefficient, gain, and radiation patterns were examined.

  • PDF

Design and Implementation of Rectenna Using 2×2 Array Patch Antenna (2×2 배열 패치 안테나 구조를 갖는 렉테나 설계 및 구현)

  • Kim, Sun-Woong;Choi, Dong-You
    • Journal of Information Technology Services
    • /
    • v.13 no.1
    • /
    • pp.135-146
    • /
    • 2014
  • In this paper, an antenna has been proposed for the operation of mobile devices such as Zigbee. The presented rectenna operates at ISM (Industrial Scientific Medical) band of 2.45 GHz and consists of $2{\times}2$ array patch antenna and Villard voltage double rectifier circuit for high conversion efficiency. $2{\times}2$ array patch antenna is fabricated in FR4 substrate having thickness of 1.6mm and dielectric constant of 4.7. The proposed $2{\times}2$ array patch antenna resonates at 2.56GHz with return loss of 38.36dB, VSWR of 1.0244, and its impedance is matched to $50{\Omega}$. The fabricated rectenna has maximum conversion efficiency of 59.8% at an input power lever of 15dBm and load resistance of $500{\Omega}$.

Optimized Design of a Tag Antenna for RFID using a Meander Line (미앤더 라인을 이용한 RFID 태그 안테나 최적 설계)

  • Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2293-2298
    • /
    • 2011
  • In this paper, A tag antenna structure for RFID application with resonant frequency of 920MHz is proposed using the meander line technique and Evolution Strategy. Miniaturization structure design for a tag antenna is performed by structure combining the half-wave dipole with a meander line. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is made for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The optimized tag antenna size is 63mm ${\times}$ 15mm ${\times}$ 1mm. And the proposed antenna is realized on FR-4 substrate (${\epsilon}_r=4.4$, $tna{\delta}=0.02$).

Front-to-Back Ratio Improvement of a Microstrip Patch Antenna Loaded with Soft Surface Structure in a Partially Removed Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna. The back radiation of the microstrip patch antenna is reduced by removing some metallic parts around the ground plane and placing a new soft-surface configuration, consisting of an array of stand-up split-ring resonators on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional microstrip patch antenna with a full ground plane of the same size, our proposed microstrip patch antenna experimentally achieves an improved F/B ratio of 9.6 dB.

Wideband Microstrip Slot Array Antenna for Radar Applications

  • Rakluea, P.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.211-214
    • /
    • 2004
  • Microstrip slot array antenna fed by microstrip line is introduced. Slot antenna is designed to operate at 10 GHz for using in radar systems. Antenna have dielectric constant of the substrate is 2.17 (PTFE). In fact, it is study to analyze slot array antenna including feeding line with wide bandwidth. The characteristics of antenna is proposed and analyzed for instance input impedance, $S_{11}$ parameter and far field radiation patterns which these characteristics can also be calculated efficiently and accurately by using FDTD Method.

  • PDF

Design of Implantable CPW Fed Monopole Antenna for ISM Band Applications

  • Kumar, S. Ashok;Shanmuganantham, T.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.55-59
    • /
    • 2014
  • An implantable CPW fed monopole antenna embedded into human tissue is proposed for ISM band biomedical applications. The proposed antenna is made compatible for implantation by embedding it in an alumina ceramic substrate (${\Box}_r=9.8$ and thickness=0.65 mm). The proposed antenna covers the ISM band of 2.45 GHz. The radiation parameters, such as return loss, E-Plane, H-Plane, are measured and analyzed, using the method of moments. The proposed antenna has substantial merits over other implanted antennas, like low profile, miniaturization, lower return loss, and better impedance matching and high gain.

Design and Performances of Implantable CPW Fed Apollian Shaped Antenna at 2.45 GHz ISM Band for Biomedical Applications

  • Kumar, S. Ashok;Sankar, J. Navin;Dileepan, D.;Shanmuganantham, T.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.250-253
    • /
    • 2015
  • A novel implantable CPW fed Apollian shaped antenna embedded into human tissue is proposed for ISM band biomedical applications. The proposed antenna is made compatible for implantation by embedding it in an alumina ceramic substrate(εr=9.8 and thickness= 0.65 mm). The proposed antenna covers the ISM band of 2.45 GHz. The radiation parameters such as return loss, xy-plane, xz-plane, and yz-plane etc., are measured and analyzed using the agilent vector network analyzer. The proposed antenna has substantial advantages, including low profile, miniaturization ability, lower return loss, better impedance matching, and high gain over conventional implanted antennas.

Aperture-Miniaturized Antenna Loaded with Split Ring Resonator Array

  • Oh, Soon-Soo;Park, Wook-Ki;Kang, Suk-Youb;Park, Hyo-Dal
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.315-317
    • /
    • 2009
  • In this letter, a novel antenna with a miniaturized aperture is proposed. The substrate including a split-ring resonator array is inserted into a size-reduced open-ended waveguide. For a low return loss and high radiation efficiency, the ring arrangement is optimized, and a stepped transition using H-plane discontinuity is proposed. The proposed antenna achieves a 70% aperture reduction compared to a conventional standard waveguide antenna of WR-187 (47.6 mm${\times}$22.2 mm). The return loss drops significantly at three frequencies, and a reasonable gain is achieved. The aperture-miniaturized antenna can be used in many antenna applications such as near-field measurement.

  • PDF