• Title/Summary/Keyword: Antenna Noise Temperature

Search Result 22, Processing Time 0.029 seconds

The calculation and Measurement Methods for G/T of the Telemetry Small Aperture Antenna (원격자료수신장비 소형반사판 안테나 G/T 예측 및 측정)

  • Kim, Chun-Won;An, Na-Gyun;Kim, Dong-Hyun;Cho, Byung-Lok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.657-662
    • /
    • 2022
  • In this paper, the calculation using simulation and two measurement methods for G/T of the telemetry are analyzed. Antenna gain and noise temperature are calculated by using ICARA and Antenna Noise Temperature Calculator. System G/T were calculated by using Antenna gain/noise temperature, LNA gain/noise temperature, cable loss. The first G/T measurement method is Y-factor measurement method, which is to calculate G/T by comparing LNA noise temperature and a signal level difference when an antenna and a 50ohm termination are respectively connected to an LNA input terminal Second method is Solar calibration measurement method that is to calculate G/T by comparing noise level difference when looking at the sun and lowest level point. Finally, the accuracy was reviewed by comparing the G/T calculation results with the two measurement methods, and the optimal measurement method according to antenna performance and operating environment was presented.

Ku Band Antenna G/T Analysis and Experiment According to Elevation Angle Change (앙각변동에 따른 Ku 밴드 안테나 G/T 분석 및 실험)

  • Lee, Kyung-Soon;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.550-559
    • /
    • 2017
  • In order to maintain communication while the vehicle is moving, satellite azimuth angle and elevation angle correction are needed in real time. The elevation angle correction affects the system G/T according to the variation of the external noise temperature flowing into the antenna. G/T is expressed as a ratio of power gain G to noise temperature T and is an important performance function required for antenna gain design. This paper aims to G/T analysis considering elevation angle change and the establishment of an antenna design procedure. For this purpose, the relationship between elevation angle and brightness temperature including rain attenuation was analyzed according to recommendation ITU-R P.372 radio noise. Next, an antenna was designed based on the analysis results and design procedure was verified by G/T measurement. Through this experiment, G/T according to elevation angle was confirmed, and the minimum antenna gain analysis and design procedure required in the system could be established.

Analysis on Receiving Performance Degradation of Ground Station in Lunar Mission (달 잡음에 의한 지상 시스템 수신 성능 열화 분석)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.208-216
    • /
    • 2014
  • Ground station in lunar mission is responsible to receive telemetry signal including sensor data from lunar orbiter and/or lander. At preliminary stage of developing this ground station, receiving performance such as antenna size and noise temperature should be designed on the basis of link budget analysis. When the antenna of ground station is pointing to the moon to communicate with lunar orbiter and/or lander, noise level is supposed to be increasing due to the lunar flux density. It means that the moon is working as a noise source to degrade receiving performance when antenna is pointing to the moon. Antenna noise temperature contributed by the moon was firstly calculated and secondary validated by using test configuration in this paper. Consequently, it was shown that antenna noise temperature caused by the moon was quietly matched with measured one and G/T degradation of receiving system in lunar mission can be calculated depending on antenna size and frequency.

An Analysis of the Figure of Merit depending on the cut-off size of a Small Reflector for Satellite Broadcast Receiving Antenna (위성방송 수신용 소형 반사면 안테나의 절단 크기에 따른 성능지수의 분석)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.152-155
    • /
    • 2013
  • In this paper, the reduction of the figure of merit depending on the increased spill-over when the parabolic reflector is cut off partially for low-profile configuration in the satellite broadcast receiving antenna is analyzed. Also for the accurate analysis and simulation, it is considered that the noise temperature is increased due to the effect of ground thermal noise toword the sidelobes and back lobes when the antenna is tracked from $0^{\circ}$ to $60^{\circ}$ in elevation angle, and that the total noise temperature is increased because to the noise figure of LNA. As the results, noise temperature is increased up to about 15K and G/T ratio is decreased to about 2.5dB, when the reflector is cut 35% off partially.

DEVELOPMENT OF THE 5GHZ CONTINUUM RECEIVER SYSTEM (5GHZ대 연속 전파 수신 시스템의 개발)

  • Byeon, Do-Yeong;Choi, Han-Gyu;Lee, Jeong-Won;Gu, Bon-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.109-123
    • /
    • 1996
  • We have developed a 5GHz continuum receiver system. The receiver is a direct type receiver. In order to reduce the noise due to the fluctuation of the gain in the amplifiers, the system employs the Dicke switching method. We made the 5GHz low-noise amplifier and the bandpass filter. The low-noise amplifier gives ${\sim}35dB$ gain and has ${\sim}210K$ noise temperature. The bandpass filter has a passband between 4.3 and 5.4GHz. We also made switch driver, video amplifiers, phase detector, and integrator. Using a 1.8 meter offset parabolic antenna, we measured the efficiency of the system. Since the antenna does not have a driver to track objects, observations were performed with the antenna fixed. The measured noise temperature of the system is ${\sim}650K$. From the observation of the blank sky, noise level was measured. It was found that the systematic noise(${\sim}0.5K$: peak to peak value) is much larger than the thermal noise. The systematic noise is possibly related to the stability of the DC power supplied to the receiver system. Besides the noise of the system, it was found that the airplanes are the very serious noise sources. We measured the radio flux of the Sun using the developed system. The observed radio flux of the Sun is ${\sim}10^6Jy$, which is close to the known value of the quiet Sun. The test observation of the Sun shows that the angular beam size of the antenna is ${\sim}2.2^{\circ}$.

  • PDF

Performance Analysis of GPS Antenna for KSLV-I under Hot Temperature Environment (고온 환경에서 KSLV-I 발사체용 GPS 안테나의 성능 분석)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don;Jung, Ho-Rac
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.157-164
    • /
    • 2007
  • For a GPS antenna to normally receive GPS satellite signals during full flight mission of a satellite launch vehicle, it should be installed on skin of the vehicle. The surface of a launch vehicle is drastically heated up due to aerodynamic heating effect during flight, so that the GPS antenna mounted on surface of the launch vehicle is directly exposed to extremely hot temperature environment. Hot temperature test specification of the GPS antenna, therefore, is severer than inner components. This paper describes that procedures and results of performance analysis of the GPS antenna for KSLV-I under hot temperature environment. The GPS antenna was not deformed physically and inner LNA(Low Noise Amplifier) operated normally without performance degradation.

  • PDF

Ka-band Compact AESA Antenna Unit Design for Seeker

  • Bongmo Kang;Ikjong Bae;Jaesub Han;Youngwan. Kim;Jaehyun Shin;Jihan Joo;Seonghyun Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.330-338
    • /
    • 2024
  • In this paper, a Ka-band high-output active phased array antenna device applicable to small radars and seekers was designed, and the improved performance was studied. The radiation device assembly consists of 1x8 arrangements, and the step flared notch antenna type. It shows low active reflection loss characteristics in broadband, and low loss characteristics by applying the air-strip feeding structure, and is designed to enable beam steering up to 45 degrees. The TRM(transmit receive module) output power is more than 2.0W per channel using GaN HPA in the transmitting path, and satisfies more than 25.0 dB gain and less than 6.0 dB noise figure in the receiving path. Accordingly, the Effective Isotropically Radiated Power(EIRP) of the antenna unit shows the performance of 0.00 dB or more and the receive gain-to-noise temperature ratio(G/T) of 0.00 dB/k or more. For demonstration, we have designed aforementioned planar array antenna which consists of 64 radiating elements having a size within 130 mm x 130 mm x 300 mm and weight of less than 4.9 kg..

Implementation of Active Monopole Antenna with Embedded Bandpass Filters for Antenna (대역통과 필터가 내장된 능동 모노폴 안테나 구현)

  • Jang, Jin-Woo;Lee, Won-Taek;Kim, Joon-Il;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.81-82
    • /
    • 2007
  • This paper presents a WLAN band active monopole antenna which is made of a CPW-fed monopole antenna and a low noise amplifier implemented on single-layer low-temperature co-fired ceramic (LTCC) substrate. Planar active antenna measure return loss and power test. (drain voltage = 4V, gate voltage = -0.6V). The bandwidth, is 540MHz, return loss is -38dB.

  • PDF

Degradation Analysis of User Terminal EIRP and G/T due to Station-Keeping Variation of Stratospheric Platform

  • Ku, Bon-Jun;Ahn, Do-Seob;Baek, Dong-Cheol;Park, Kwang-Ryang;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 2000
  • Wireless communication systems using airship have been proposed in worldwide. The airship will be located at the stratosphere about $20{\sim}23\;km$ above the sea level. The position of airship will vary within the station keeping range with time due to the drag of the wind in the stratosphere. When the earth station antenna has a high gain without the tracking function, the antenna performance may be degraded by a small variation of the airship. This means that variation of airship location could result in serious degradation of the system performance. In this paper, degradation in earth station's Equivalent Isotropic Radiated Power (EIRP) and Gain to noise Temperature ratio (G/T) due to the stratospheric platform movements has been derived by calculating the deviation angle of the main beam directions between the earth station and the platform antenna. In this case, the antenna of the earth station has been assumed circular and/or patch array antennas.

  • PDF

A Study on the Design and Characteristics of a Cassegrain Antenna with Beam Waveguide Feeds (빔 웨이브 가이드 급전계 카세그테인 안테나의 설계 및 특성에 관한 연구)

  • 김종중;장대석;이상설
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.10a
    • /
    • pp.40-44
    • /
    • 1986
  • The cassegrain antenna, 32metor , diameter, is designed for the satellite earth station at Boun. It is fed by a beam waveguide of type. The results of measurements G/T (Gain to Noise Temperature ratio) is 40.86dB/K at the elevation elevation angle 5˚ for 4GHz. And the average transmit and receive gain are 64.62dB and 61.3dB, respectively. They satisfy the values designed for the antenna. The sidelobe levels of the pattern also are in good accord with the recommendation of C.C.I.R.

  • PDF