• Title/Summary/Keyword: Antenna Feeding Structure

Search Result 158, Processing Time 0.031 seconds

A Design and Manufacture of Modified Rhombus Slot UWB antenna with Fork-shaped-Feedline (포크 모양의 급전 구조를 갖는 변형된 마름모 슬롯 UWB 안테나 설계 및 제작)

  • Ha, Sung-Jea;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1221-1228
    • /
    • 2016
  • In this paper, we propose a modified rhombus slot UWB(Ultra Wide Band) antenna with fork-shaped feeding structure. The proposed antenna is modified rhombus slot structure and fork-shaped feeding structure to get ultra-wideband characteristics for UWB communication. Modified rhombus slot structure consists of slot shaped which eliminated upper and lower part of the basic rhombus slot. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $34mm(W_1){\times}34mm(L_1){\times}1mm(t)$, and its slot antenna size is $30mm(W_2){\times}16.75mm(L_3+L_4)$. After carrying out the simulation of each parameters, optimized values are obtained. From the fabricated and measured results, return loss of the proposed antenna satisfied Return Loss -10dB in 3.1 ~ 10.6 GHz. And measured results of gain and radiation patterns characteristics displayed for operating bands.

A Study on the Active Integrated Antenna (능동 집적 안테나에 관한 연구)

  • 이병무;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • This paper presents novel architectures for power amplifier (PA) relying on 3rd harmonic-tuning technique and dual feeding antenna structure for the isolation of the Tx and the Rx ports. Active integrated antenna (AIA) with power amplifier makes the problem of the isolation between the Tx and the Rx ports occur So, this paper suggests dual feeding and dual resonant structures of the AIA with PA are possible to obtain the high isolation between the Tx and the Rx signals. Dual resonant triangular microstrip antenna, which can replace power amplifier tuning circuit, with slots-loaded and characteristic of the isolation between the Tx and the Rx ports using inset microstrip line feeding and probe feeding methods is proposed and experimentally studied for the case of thin substrate.

The Design of repeater U-shaped Antenna for ship base station Applications (선박기지국 응용을 위한 중계기용 U형 급전 안테나 설계)

  • Park, Chang-Hyun;Kim, Young-Nam;Kim, Kab-Ki
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.211-214
    • /
    • 2007
  • In this paper, we have designed microstrip antenna if 800[MHz] band It will be able to integrate TRS(Trunked Radio System), GSM(Global System for Mobile telecommunication) band including the CDMA(Code Division Multiple Access) band we designed repeater and a base station antenna which is possible at the ship and marine of safety. It is improves a narrow bandwidth problem of microstrip antenna. It had U-shaped feeding structure at a rectangular patch And ground or feeding structure used between dielectric constant(${\varepsilon}_T$ = 2.1), patch or feeding structure used between dielectric constant(${\varepsilon}_T$ =1). So it used a duplex resonance effect Designed frequency bandwith(V5WR 2:1) if the antenna showed good characteristic of $780[MHz]{\sim}1.83[GHz]$ to 2.61[GHz]. Also the E-plan and H-plan all profit 9.4[dBi] above, the 3[dB] beam width showed the characteristic over the E-plan and H-plan $60^{\circ}$ to be improved.

  • PDF

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR (MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.

Hybrid Antenna for the All Band Mobile Phone Service Including LTE (LTE를 포함한 전 휴대폰 서비스 대역 하이브리드 안테나)

  • Lim, Seung-Jin;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.737-743
    • /
    • 2011
  • In this paper, we designed and implemented a Monopole+IFA(Inverted F Antenna) hybrid antenna using the coupled feeding structure for the all band mobile phone. Studied antenna has wide band characteristics by the simultaneous operation both monopole and IFA under the coupled feeding structure. An antenna has designed PCB embedded type without antenna carrier component for the low in cost. Implemented antenna has within 2.5:1 for VSWR under LTE/CDMA/GSM900/DCS/USPCS/WCDMA/WiBro/WiFi in all band for the mobile services Measured average gains and efficiencies were -3.98~-0.09 dBi and 40.03~97.99 % for the LTE, CDMA, GSM900 band, and -3.90~-1.01 dBi and 40.70~79.31 % for the DCS, USPCS, WCDMA, WiBro, WiFi band. It's shown that studied antenna can be applied to all band mobile phone antenna including LTE.

A Simple CPW-Fed UWB Antenna Design

  • Park, Sang-Yong;Oh, Seon-Jeong;Park, Jong-Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • In this paper, we have described a simple CPW-fed UWB antenna for wireless UWB communication. The proposed antenna consists of two symmetrical strips having two steps and CPW feeding. Two techniques(symmetrical structure, two steps) are used to produce good low-dispersion and impedance matching. The proposed UWB antenna has an omni directional radiation pattern, compact size, low dispersion, and low cost.

Design of L-shaped Dual Inset Feeding Microstrip Stacked Patch Antenna for 2.5GHz Band (이중 L형 인셋 급전된 2.5GHz용 적층 마이크로 스트립 안테나의 설계)

  • Kim, Gun-Kyun;Kim, On;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.461-466
    • /
    • 2019
  • In this paper, we have studied the improvement of gain and bandwidth characteristics by using double feeding and L-shaped inset feed line matching circuit in microstrip stacked patch antenna which is widely used to broaden the gain of general microstrip antenna. The proposed structure is composed of two feeding edges of the main patch antenna, each of them are connected to a feeding line having an L shaped inset feeder. And the parasitic patch is placed at a proper distance above the main patch. The size of the main patch is designed so that the resonance frequency is close to the center frequency of the target frequency band. The experimental results show that the bandwidth was increased more than 180MHz in the 2.3-2.7 GHz band, which is more interesting than the single feed, and the gain improvement of 2.5dBi was obtained at 2.7GHz.

Dualband Shared-Aperture Microstrip Antenna for Reflectarray Feeding Structure of LEO Satellite System

  • Bagas Satriyotomo;Ji-Woong Hyun;Seongmin Pyo
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.20-25
    • /
    • 2024
  • This paper presents a new dualband shared-aperture microstrip antenna to operate in the S-Band of 2 GHz and X-Band of 8 GHz, for a Low Earth Orbit satellite antenna system. The proposed antenna incorporates two types of patches those are a rectangular loop-shaped for the S-Band and a square patch for the X-Band. Each patch are optimized for its respective operating band with minimal interference. The proposed antenna achieves a bandwidth of 16 MHz in the S-Band and 572 MHz in the X-Band. The highest gain is measured 7.14 dBi at 1.99 GHz and 7.95 dBi at 7.88 GHz. The proposed antenna exhibits half power beamwidths of 85 degree and 80 degree at 1.99 GHz and 7.88 GHz, respectively. The proposed dualband shared-aperture microstrip antenna may be a good candidate for as a feeding system of a dualband reflectarray antenna With its unidirectional radiation pattern from excellent agreement between simulation and measurement results.

A Dual-Band Gap-Filler Antenna Design with a Phi-Shaped Slot

  • Park, Sang Yong;Park, Jong Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.111-114
    • /
    • 2015
  • In this paper, we have proposed dual-band Phi-shaped slot gap filler antenna for satellite internet service applications. Some properties of the antenna such as return loss, radiation pattern, and gain have been simulated and measured. The proposed antenna has a Phi-shaped slot on the circular patch and is fabricated on the TLX-9 substrate. The radius of the circular patch is 25 mm, and it has a coaxial feeding structure. The dual-band Phi-shaped slot gap filler antenna has high-gain, small-size, simple-structure, and good radiation patterns at each band. The operating frequency band can be tuned by adjusting the length AL and FL of the Phi-shaped slot.

RFID Tag Antenna Coupled by Shorted Microstrip Line for Metallic Surfaces

  • Choi, Won-Kyu;Kim, Jeong-Seok;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.597-599
    • /
    • 2008
  • This letter presents the design of a small and low-profile RFID tag antenna in the UHF band that can be mounted on metallic objects. The designed tag antenna, which uses a ceramic material as a substrate, consists of a radiating patch and a microstrip line with two shorting pins for a proximity-coupled feeding structure. Using this structure, impedance matching can be simply obtained between the antenna and tag chip without a matching network. The fractional impedance bandwidth for $S_{11}$ <3 dB and radiation efficiency are about 1.4% and 56% at 911 MHz, respectively. The read range is approximately from 5 m to 6 m when the tag antenna is mounted on a metallic surface.

  • PDF