• Title/Summary/Keyword: Ant System, AS

Search Result 123, Processing Time 0.026 seconds

Integrating Ant Colony Clustering Method to a Multi-Robot System Using Mobile Agents

  • Kambayashi, Yasushi;Ugajin, Masataka;Sato, Osamu;Tsujimura, Yasuhiro;Yamachi, Hidemi;Takimoto, Munehiro;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.181-193
    • /
    • 2009
  • This paper presents a framework for controlling mobile multiple robots connected by communication networks. This framework provides novel methods to control coordinated systems using mobile agents. The combination of the mobile agent and mobile multiple robots opens a new horizon of efficient use of mobile robot resources. Instead of physical movement of multiple robots, mobile software agents can migrate from one robot to another so that they can minimize energy consumption in aggregation. The imaginary application is making "carts," such as found in large airports, intelligent. Travelers pick up carts at designated points but leave them arbitrary places. It is a considerable task to re-collect them. It is, therefore, desirable that intelligent carts (intelligent robots) draw themselves together automatically. Simple implementation may be making each cart has a designated assembly point, and when they are free, automatically return to those points. It is easy to implement, but some carts have to travel very long way back to their own assembly point, even though it is located close to some other assembly points. It consumes too much unnecessary energy so that the carts have to have expensive batteries. In order to ameliorate the situation, we employ mobile software agents to locate robots scattered in a field, e.g. an airport, and make them autonomously determine their moving behaviors by using a clustering algorithm based on the Ant Colony Optimization (ACO). ACO is the swarm intelligence-based methods, and a multi-agent system that exploit artificial stigmergy for the solution of combinatorial optimization problems. Preliminary experiments have provided a favorable result. In this paper, we focus on the implementation of the controlling mechanism of the multi-robots using the mobile agents.

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

The Ant Algorithm Considering the Worst Path in Traveling Salesman problems (순회 외판원 문제에서 최악 경로를 고려한 개미 알고리즘)

  • Lee, Seung-Gwan;Lee, Dae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2343-2348
    • /
    • 2008
  • Ant algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the improved $AS_{rank}$ algorithms. The original $AS_{rank}$ algorithm accomplishes a pheromone updating about only the paths which will be composed of the optimal path is higher, but, the paths which will be composed the optimal path is lower does not considered. In this paper, The proposed method evaporate the pheromone of the paths which will be composed of the optimal path is lowest(worst tour path), it is reducing the probability of the edges selection during next search cycle. Simulation results of proposed method show lower average search time and average iteration than original ACS.

Airline Disruption Management Using Ant Colony Optimization Algorithm with Re-timing Strategy (항공사 비정상 운항 복구를 위한 리-타이밍 전략과 개미군집최적화 알고리즘 적용)

  • Kim, Gukhwa;Chae, Junjae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.13-21
    • /
    • 2017
  • Airline schedules are highly dependent on various factors of uncertainties such as unfavorable weather conditions, mechanical problems, natural disaster, airport congestion, and strikes. If the schedules are not properly managed to cope with such disturbances, the operational cost and performance are severely affected by the delays, cancelations, and so forth. This is described as a disruption. When the disruption occurs, the airline requires the feasible recovery plan returning to the normal operations in a timely manner so as to minimize the cost and impact of disruptions. In this research, an Ant Colony Optimization (ACO) algorithm with re-timing strategy is developed to solve the recovery problem for both aircraft and passenger. The problem consists of creating new aircraft routes and passenger itineraries to produce a feasible schedule during a recovery period. The suggested algorithm is based on an existing ACO algorithm that aims to reflect all the downstream effects by considering the passenger recovery cost as a part of the objective function value. This algorithm is complemented by re-timing strategy to effectively manage the disrupted passengers by allowing delays even on some of undisrupted flights. The delays no more than 15 minutes are accepted, which does not influence on the on-time performance of the airlines. The suggested method is tested on the real data sets from 2009 ROADEF Challenge, and the computational results are compared with the existing ones on the same data sets. The method generates the solution for most of problem set in 10 minutes, and the result generated by re-timing strategy is discussed for its impact.

Development of Fuzzy Logic Ant Colony Optimization Algorithm for Multivariate Traveling Salesman Problem (다변수 순회 판매원 문제를 위한 퍼지 로직 개미집단 최적화 알고리즘)

  • Byeong-Gil Lee;Kyubeom Jeon;Jonghwan Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.

Object-Based Road Extraction from VHR Satellite Image Using Improved Ant Colony Optimization (개선된 개미 군집 최적화를 이용한 고해상도 위성영상에서의 객체 기반 도로 추출)

  • Kim, Han Sae;Choi, Kang Hyeok;Kim, Yong Il;Kim, Duk-Jin;Jeong, Jae Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.109-118
    • /
    • 2019
  • Road information is one of the most significant geospatial data for applications such as transportation, city planning, map generation, LBS (Location-Based Service), and GIS (Geographic Information System) database updates. Robust technologies to acquire and update accurate road information can contribute significantly to geospatial industries. In this study, we analyze the limitations of ACO (Ant Colony Optimization) road extraction, which is a recently introduced object-based road extraction method using high-resolution satellite images. Object-based ACO road extraction can efficiently extract road areas using both spectral and morphological information. This method, however, is highly dependent on object descriptor information and requires manual designations of descriptors. Moreover, reasonable iteration closing point needs to be specified. In this study, we perform improved ACO road extraction on VHR (Very High Resolution) optical satellite image by proposing an optimization stopping criteria and descriptors that complements the limitations of the existing method. The proposed method revealed 52.51% completeness, 6.12% correctness, and a 51.53% quality improvement over the existing algorithm.

Autonomy for Smart Manufacturing (스마트 매뉴팩처링을 위한 자율화)

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.287-295
    • /
    • 2014
  • Smart manufacturing (SM) considered as a new trend of modern manufacturing helps to meet objectives associated with the productivity, quality, cost and competiveness. It is characterized by decentralized, distributed, networked compositions of autonomous systems. The model of SM is inherited from the organization of the living systems in biology and nature such as ant colony, school of fish, bee's foraging behaviors, and so on. In which, the resources of the manufacturing system are considered as biological organisms, which are autonomous entities so that the manufacturing system has the advanced characteristics inspired from biology such as self-adaptation, self-diagnosis, and self-healing. To prove this concept, a cloud machining system is considered as research object in which internet of things and cloud computing are used to integrate, organize and allocate the machining resources. Artificial life tools are used for cooperation among autonomous elements in the cloud machining system.

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

An Empirical Study for Performance Evaluation of Web Personalization Assistant Systems (웹 기반 개인화 보조시스템 성능 평가를 위한 실험적 연구)

  • Kim, Ki-Bum;Kim, Seon-Ho;Weon, Sung-Hyun
    • The Journal of Society for e-Business Studies
    • /
    • v.9 no.3
    • /
    • pp.155-167
    • /
    • 2004
  • At this time, the two main techniques for achieving web personalization assistant systems generally concern direct manipulation and software agents. While both direct manipulation and software agents are intended for permitting user to complete tasks rapidly, efficiently, and easily, their methodologies are different. The central debate involving these web personalization techniques originates from the amount of control that each allows to, or holds back from, the users. Direct manipulation can provide users with comprehensibel, predictable and controllable user interfaces that give them a feeling of accomplishnent and responsibility. On the other hand, the intelligent software components, the agents, can assist users with artificial intelligence by monitoring or retrieving personal histories or behaviors. In this empirical study, two web personalization assistant systems are evaluated. One of them, WebPersonalizer, is an agent based user personalization tool; the other, AntWorld, is a collaborative recommendation tool which provides direct manipulation interfaces. Through this empirical study, we have focused on two different paradigms as web personalization assistant systems : direct manipulation and software agents. Each approach has its own advantages and disadvantages. We also provide the experimental result that is worth referring for developers of electronic commerce system and suggest the methodologies for conveniently retrieving necessary information based on their personal needs.

  • PDF

A study on correlation between frictional coefficients and subjective evaluation while rubbing cosmetic product on skin (화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구)

  • Kwon Young-Ha;Kwon Hyun-Joon;Rang Moon-Jeong;Lee Su-Min
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • A frictional coefficients of in-vivo skin characteristic is the most important factor of the cutaneous mechanical properties ant the method of evaluating skin care in the fields of cosmetics products. In-vivo skin characteristic varies in many different ways depends on what is applied to the skin, loading condition, shape, surface roughness, and material of the probe. In this research, we designed a system which can be measured frictional coefficients of a human skin on real time. It consists of multi-components load-cell, actuator, linear motor and arm fixator. This measurement system was automatically controlled by computer. We measured frictional coefficients between probe an4 skin using this system ant inquired adjectives for subjective evaluation while rubbing cosmetic product on skin. Lastly, we analyzed correlation between two factors by calculating Pearson Correlation Coefficient. As a result, we could know that frictional coefficients varied from 0.17-1.2 according to cosmetic products, normal forte, materials and surface conditions of probe. We also confirmed sensual feelings of cosmetic products have close correlation with frictional coefficients.

  • PDF