• 제목/요약/키워드: Ant Colony Algorithm

검색결과 129건 처리시간 0.029초

순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선 (Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem)

  • 장주영;김민제;이종환
    • 산업경영시스템학회지
    • /
    • 제42권3호
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • 제8권4호
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

배전 계통의 손실 최소화를 위한 개미 군집 알고리즘의 적용 (Application of Ant colony Algorithm for Loss Minimization in Distribution Systems)

  • 전영재;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권4호
    • /
    • pp.188-196
    • /
    • 2001
  • This paper presents and efficient algorithm for the loss minimization by automatic sectionalizing switch operation in distribution systems. Ant colony algorithm is multi-agent system in which the behaviour of each single agent, called artificial ant, is inspired by the behaviour of real ants. Ant colony algorithm is suitable for combinatiorial optimization problem as network reconfiguration because it use the long term memory, called pheromone, and heuristic information with the property of the problem. The proposed methodology with some adoptions have been applied to improve the computation time and convergence property. Numerical examples demonstrate the validity and effectiveness of the proposed methodology using a KEPCO's distribution system.

  • PDF

ACO와 PSO 기법을 이용한 이동로봇 최적화 경로 생성 알고리즘 개발 (DEVELOPMENT OF A NEW PATH PLANNING ALGORITHM FOR MOBILE ROBOTS USING THE ANT COLONY OPTIMIZATION AND PARTICLE SWARM OPTIMIZATION METHOD)

  • 이준오;고종훈;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.77-78
    • /
    • 2008
  • This paper proposes a new algorithm for path planning and obstacles avoidance using the ant colony optimization algorithm and the particle swarm optimization. The proposed algorithm is a new hybrid algorithm that composes of the ant colony algorithm method and the particle swarm optimization method. At first, we produce paths of a mobile robot in the static environment. And then, we find midpoints of each path using the Maklink graph. Finally, the hybrid algorithm is adopted to get a shortest path. We prove the performance of the proposed algorithm is better than that of the path planning algorithm using the ant colony optimization only through simulation.

  • PDF

개미 집단 최적화 기법을 이용한 이동로봇 최적 경로 생성 알고리즘 개발 (DEVELOPMENT OF A NEW OPTIMAL PATH PLANNING ALGORITHM FOR MOBILE ROBOTS USING THE ANT COLONY OPTIMIZATION METHOD)

  • 이준오;고종훈;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.311-312
    • /
    • 2007
  • This paper proposes a new algorithm for path planning and obstacles avoidance using the ant colony optimization algorithm. The proposed algorithm is a new hybrid algorithm that composes of the ant colony algorithm method and the Maklink graph method. At first, we produce the path of a mobile robot a the static environment. And then we find midpoints of each path using the Maklink graph. Finally the ant colony optimization algorithm is adopted to get a shortest path. In this paper, we prove the performance of the proposed algorithm is better than that of the Dijkstra algorithm through simulation.

  • PDF

그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구 (A Effective Ant Colony Algorithm applied to the Graph Coloring Problem)

  • 안상혁;이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.221-226
    • /
    • 2004
  • 개미 집단 시스템(Ant Colony System ACS) 알고리즘은 조합 최적화 문제를 해결하기 위한 새로운 메타 휴리스틱 방법이다. 이것은 그리디 탐색뿐만 아니라 긍정적 피드백에 의한 탐색을 이용한 모집단에 근거한 접근법으로 조합 최적화 문제를 해결하기 위해 제안되었다. 최근까지 인접한 노드($v_i, v_j$)가 같은 색을 갖지 않도록 그래프 G의 노드 V에 색을 배정하는 문제인 그래프 착색 문제의 최적 해를 구하기 위하여 다양한 접근 방식들과 해법들이 제안되고 있다. 본 논문에서는 기존의 그래프 착색 문제의 해법으로 잘 알려진 그리디 알고리즘, 시뮬레이티드어넬링, 타부 탐색 등이 아닌 개미 집단 시스템 알고리즘으로 해법을 구하는 방법인 ANTCOL 알고리즘을 소개하고, ANTCOL을 해결하기 위해 제안된 기존의 생성 함수들(ANT_Random ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF)과, 본 논문에서 새롭게 제안된 방법으로 RLF에 무작위 기법을 적용한 XRLF를 생성 함수로 사용한 ANT_XRLF 방법과 ANT_XRLF에 재검색을 추가한 방법(ANT_XRLF_R)의 그래프 착색 결과 및 실행 시간을 비교, 분석하여 제안된 방법이 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.

Symmetric Traveling Salesman Problem을 해결하기 위해 Ant Colony System에서의 효과적인 최적화 방법에 관한 연구 (An Effective Ant Colony System Optimization for Symmetric Traveling Salesman Problem)

  • 정태웅;이승관;정태충
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.321-324
    • /
    • 2000
  • 조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.

  • PDF

개미 집단 최적화 기법을 이용한 이동 로봇 최적 경로 생성 알고리즘 개발 (Development of a New Optimal Path Planning Algorithm for Mobile Robots Using the Ant Colony Optimization Method)

  • 고종훈;김주민;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1827_1828
    • /
    • 2009
  • In this paper proposes a new algorithm for path planning using the ant colony optimization algorithm. The proposed algorithm is a new hybrid algorithm that composes of the features of the ant colony algorithm method and the Maklink graph method. At first, paths are produced for a mobile robot in a static environment, and then, the midpoints of each obstacles nodes are found using the Maklink graph method. Finally, the shortest path is selected by the ant colony optimization algorithm.

  • PDF

멀티캐스트 라우팅을 위한 Ant Colony System 설계에 대한 연구 (A Study of Ant Colony System Design for Multicast Routing)

  • 이성근;한치근
    • 정보처리학회논문지A
    • /
    • 제10A권4호
    • /
    • pp.369-374
    • /
    • 2003
  • 조합 최적화 문제를 풀기 위한 개미 알고리즘(Ant Algorithm)은 실제 개미 집단의 행동을 모방하여 만들어진 것이다. Ant Colony System(ACS)은 여러 유형의 개미 알고리즘 중 비교적 최근에 소개된 것이다. ACS의 설계를 위해 순회 외판원 문제(Traveling Salesman Problem, TSP)를 사용하여 실험을 수행하였다. ACS를 다양한 조합 최적화 문제에 적용할 때 순회 외판원 문제에 사용된 ACS의 파라미터와 전략을 사용하고 있다. 본 논문에서는 조합 최적화 문제들 중 하나인 멀티캐스팅 라우팅 문제를 해결하기 위해 ACS를 이용하였다. 멀티캐스트 라우팅은 데이터를 하나의 송신자에서 여러 수신자들로 보내기 때문에 모든 노드를 포함하는 순회 외판원 문제와는 속성이 다르고, 송신자에서 각 수신자에 하나의 최단경로를 설정하는 문제와도 다른 속성을 지니고 있다. 본 논문에서는 멀티캐스트 라우팅에 ACS를 적용하기 위해 알고리즘의 동작을 수정하고, 수정한 ACS의 성능을 향상시키기 위한 최적의 전략과 파라미터를 설계한다.