• Title/Summary/Keyword: Ansys analysis

Search Result 1,641, Processing Time 0.027 seconds

Flexural behaviour of fibre reinforced geopolymer concrete composite beams

  • Vijai, K.;Kumutha, R.;Vishnuram, B.G.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.437-459
    • /
    • 2015
  • An experimental investigation on the behaviour of geopolymer composite concrete beams reinforced with conventional steel bars and various types of fibres namely steel, polypropylene and glass in different volume fractions under flexural loading is presented in this paper. The cross sectional dimensions and the span of the beams were same for all the beams. The first crack load, ultimate load and the loaddeflection response at various stages of loading were evaluated experimentally. The details of the finite element analysis using "ANSYS 10.0" program to predict the load-deflection behavior of geopolymer composite reinforced concrete beams on significant stages of loading are also presented. Nonlinear finite element analysis has been performed and a comparison between the results obtained from finite element analysis (FEA) and experiments were made. Analytical results obtained using ANSYS were also compared with the calculations based on theory and presented.

Static and free vibration analysis of shallow sagging inclined cables

  • Li, Zhi-Jiang;Li, Peng;He, Zeng;Cao, Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.145-157
    • /
    • 2013
  • Based on link-model, we conducted a static analysis and computation of a three-span suspended cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. Using the link and beam model based on finite element method, we analyzed the vibration modal of three-span suspended cable structure, and compared with the results obtained from ANSYS using link and beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of inclined cables.

Design and analysis of ZnO piezoelectric micro power generators with low frequency (저주파수용 ZnO 압전 마이크로 전원의 설계와 분석)

  • Chung, Gwiy-Sang;Yoon, Kyu-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

CFD/CAE Analysis of QC/DC Bellows for LNG Bunkering (LNG 벙커링용 QC/DC 밸로즈의 유동/구조 해석)

  • Jang, Sung-Cheol;Eom, Jeong-Pil;Jung, Hyun-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.191-195
    • /
    • 2018
  • By using an ANSYS product suite (CFX, Ansys Multiphysics), which is a powerful tool for multiphysics analysis of complicated physical phenomena, we performed a structural stress analysis based on fluid flow and heat transfer phenomena within a quick connect/disconnect (QC/DC) bellows system. Considering the extremely low temperatures in the QC/DC environment, an approach to the problem based on complex multi-physics phenomena, where different phenomena interact with each other, is crucial. Therefore, we use a numerical analysis technique where fluid-thermal-structural interactions are combined. In conclusion, when low temperature fluids flow inside bellows, the expected service life is conspicuously reduced due to the thermal stress caused by heat transfer. Therefore, in future research, a structure with considerably reduced thermal stress by robust design optimization will be derived.

Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine (터널 굴착기 유압시스템용 유량 제어 블록 개발)

  • Lee, Jae-Dong;Lim, Sang-Jin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

Static and harmonic analysis of moderately thick square sandwich plate using FEM

  • Manoj Nawariya;Avadesh K. Sharma;Pankaj Sonia;Vijay Verma
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.83-100
    • /
    • 2023
  • In this paper, sandwich plate, constructed with orthotropic and isotropic composite materials, is analyzed to obtain the static and harmonic behavior. The analysis is done by using ANSYS APDL FEM tool. A solid-shell 190 and an 8-node solid 185 elements are employed for face and core material respectively to analyze the plate. Results was attained by using Reissner-Mindlin theory. Effect of increasing thickness ratio of face sheet to depth of the plate is presented on static, vibration and harmonic response on the sheet and the results are discussed briefly. Published work in open domain was used to validate the results and observed excellent agreement. It can be stated that proposed model presents results with remarkable accuracy. Results are obtained to reduce the weight of the plate and minimizing the vibration amplitudes.

A Study on CAD/CAE Integration for Design Optimization of Mold Cooling Problem (CAD와 유한요소해석을 연계한 금형 냉각문제의 설계최적화에 대한 연구)

  • 오동길;류동화;최주호;김준범;하덕식
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 2004
  • In mechanical design, optimization procedures have mostly been implemented solely by CAE codes combined by optimization routine, in which the model is built, analyzed and optimized. In the complex geometries, however, CAD is indispensable tool for the efficient and accurate modeling. This paper presents a method to carry out optimization, in which CAD and CAE are used for modeling and analysis respectively and integrated in an optimization routine. Application Programming Interface (API) function is exploited to automate CAD modeling, which enables direct access to CAD. The advantage of this method is that the user can create very complex object in Parametric and automated way, which is impossible in CAE codes. Unigraphics and ANSYS are adopted as CAD and CAE tools. In ANSYS, automated analysis is done using codes made by a script language, APDL(ANSYS Parametric Design Language). Optimization is conducted by VisualDOC and IDESIGN respectively. As an illustrative example, a mold design problem is studied, which is to minimize temperature deviation over a diagonal line of the surface of the mold in contact with hot glass.

Selfie-stick Analysis through Ansys and New Design Proposal (Ansys를 이용한 셀카봉 해석 및 새로운 설계 제안)

  • Lee, JungHyeok;Jang, Hoik
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.467-475
    • /
    • 2015
  • In this paper, the FREECAD 0.14 was used for modeling conventional Selfie-stick and the newly proposed Selfie-stick design. The purpose of this paper is to demonstrate the utility of FREECAD 0.14, which is open-source and still in development for further use. After modeling the conventional Selfie-stick, CatiyaV5 was used to assemble FREECAD 0.14 drawn elements. Main advance in newly designed Selfie-stick is the portability. To improve portability of the Selfie-stick, folding mechanism was adopted from folding LED stands. Several mechanisms were adopted to improve user convenience as well. Ansys 14.0 was used for structural analyses of conventional Selfie-stick model and the newly designed model as well. Several simplifications for the models were needed to process the analyses. When analyzing the newly designed model various materials were used one by one to find compatible composition. Using Aluminum alloys for the stick and the hand grip was found to be compatible. FREECAD was useful for suggestion of the newly designed model but not so much useful to design an actual product. Various efforts would make FREECAD the best choice for industrial use for free as it is named.

  • PDF

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.

An Analytical Study on Composite Beam Performance with Post-Fire Temperature Using ANSYS Program (ANSYS를 이용한 화재 후 온도에 따른 합성보 성능에 관한 해석적 연구)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.391-400
    • /
    • 2019
  • In the case of fire, a structure loses its original stiffness due to the temperature rise, and the load bearing capacity decreases. The loss of structural strength increases with increasing fire time of the structure. To prevent the collapse of buildings, it is very important to understand whether or not the members are damaged. On the other hand, there is insufficient data to be a guideline for diagnosing and evaluating the residual strength of the members in Korea. Therefore, this study examined the resistance performance by Finite-Element-Analysis of composite beams, which are composite structures among structural members. Composite beam modeling was carried out based on the model used in the Electrical Penetration Room (EPR) in cooperation with KEPCO. The heat transfer analysis and structural analysis of the critical phase were performed using ANSYS, a finite element analysis program. ANSYS was used to perform heat transfer analysis and structural analysis at the static analysis. To analyze the residual performance, the temperature distribution of the composite beam and the maximum displacement result of the heat-affected structure analysis were derived and the experimental data and the structural analysis result data were compared and analyzed.