• Title/Summary/Keyword: Ansys

Search Result 2,194, Processing Time 0.027 seconds

Linear Motor Design by using Topology Optimization (위상최적설계를 이용한 리니어 모터의 설계)

  • Lee, Heon;Kang, Je-Nam;Wang, Se-Myung;Hong, Eon-Pyo;Park, Kyeong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.843-845
    • /
    • 2003
  • In this paper, the design of the outer core which is one part of the linear motor is investigated by using the topology optimization and FEM. The object functions are to reduce the outer core area of the linear motor with the maximum magnetic energy in airgap. For topology optimization, the finite element model is made through the result of ANSYS, and the sensitivity calculation is done using ANSTOP(developed general software for topology optimization of electromagnetics). In ANSTOP, the optimization routine is implemented using SLP in DOT and the ANSYS is used as a function solver.

  • PDF

Design and analysis of ZnO piezoelectric micro power generators with low frequency (저주파수용 ZnO 압전 마이크로 전원의 설계와 분석)

  • Chung, Gwiy-Sang;Yoon, Kyu-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

A Study on the Vibration Characteristics of Laminated Composite Rectangular Plate using ANSYS (ANSYS를 이용한 복합 적층 사각판의 진동특성에 관한 연구)

  • 이기형
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 1997
  • Composite materials have various complicated characteristics depending on the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite materials. For efficient use of composite materials in engineering applications, the dynamic behavior such as natural frequencies and nodal patterns should be identified. This study presents FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. The natural frequencies of laminated composite rectangular plates having the various boundary conditions (completely clamped, 2-edge clamped, cantilevered) are experimentally obtained. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

A study on fatigue fracture under non-constant load (불균일 하중을 받는 피로 파괴에 관한 연구)

  • Cho Jae-Ung;Lee Eun-Jong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.100-102
    • /
    • 2004
  • There are fatigue fractures at the practical area. The fatigue load happens non- constantly. As it is impossible to be predicted, it can not be known when the fracture happens. Non -constant fatigue load is simulated in this study. The stability and the life of the material are analyzed theoretically by the program of Ansys workbench. These results are greatly applied as the Practical structures to Predict the prevention of failure and the endurance.

  • PDF

Modeling of Thermal Characteristics for IGBT (IGBT을 위한 열 특성 모델링)

  • Ryu, Se-Hwan;Hwang, Kwang-Chul;Yu, Young-Han;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.147-148
    • /
    • 2005
  • As the power density and switching frequency increase, thermal analysis of power electronics system becomes imperative. The analysis provides valuable information on the semiconductor rating, long-term reliability and efficient heat-sink design. In this paper, thermal distribution of the Insulated Gate Bipolar Transistor Module has been studied with different conditions and heat sink materials. For analysis of thermal distribution, we obtained results by using finite element simulator, Ansys.

  • PDF

Finite Element Simulation of Multilayer Ultrasonic Linear Motor (적층 선형 초음파 모터의 유한요소 시뮬레이션)

  • Lee, Sang-Ho;Lee, Gab-Soo;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.284-285
    • /
    • 2006
  • In this study, multilayer structured ultrasonic linear motor was designed and simulated using ANSYS of finite element method simulator for investigating the optimum conditions of it. The ultrasonic linear motor studied in this paper designed using the 1st longitudinal($L_1$) and 4th bending vibration($B_4$). The driving voltage of the motor was very low as $V_1=5\sqrt{2}sinwt$ and $V_2=5\sqrt{2}coswt$. With the increase of the number of piezoelectric ceramic layers, displacement of node was increased. Maximum z displacement of node was about $12{\mu}m$ at the 18 layered ultrasonic motor.

  • PDF

Thermal Characteristics and Heatsink Modeling. for IGBT (IGBT의 열 특성 및 히트싱크 모델링)

  • Ryu, Se-Hwan;Bea, Kyung-Kuk;Shin, Ho-Chul;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.172-173
    • /
    • 2007
  • As the power density and switching frequency increase, thermal analysis of power electronics system becomes imperative. The thermal analysis provides valuable information on the semiconductor rating, long-term reliability. In this paper, thermal distribution of the Non Punchthrough(NPT) Insulated Gate Bipolar Transistor has been studied. For analysis of thermal distribution, we obtained experimental and simulation results by using finite element simulator, Ansys and by using photographic infrared thermometer, we compared experimental date with simulation result. and got good agreement. Also this paper provided thermal distribution of IGBT connected to heat sinks. and this results will be good information to design optimal heat sink for IGBT.

  • PDF

Prediction of Electromagnetic Repulsion Force and Temperature Rise in Electric Contact Mechanism Using ANSYS (ANSYS를 이용한 전기 접촉 기구의 전자 반발력 분석 및 온도 상승 예측)

  • Park W.J.;Kim K.H.;Ahn K.Y.;Oh I.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.666-669
    • /
    • 2005
  • As computer power increased, the system with complex phenomenon has been analyzed with the help of CAE software which can handle the coupled physics, such as electromagnetic, structure, thermal and fluid physics. To predict the electromagnetic repulsion force and the temperature distribution of an air circuit breaker with electric contact mechanism, ANSYS/EMAG, FLOTRAN can be used. Although some assumptions and simplifications were introduced to simulate the model, results from the computational model were in good agreement with actual measurements obtained from experiments.

  • PDF

Noise and Vibration Characteristics of Construction structures in Standard Laboratory (표준실험동의 구조별 소음 진동 특성)

  • Jeong, Young;Yoo, Seung-Yub;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.390-393
    • /
    • 2005
  • In this study, examined heavy-weight floor impact sound to rahmen structure(steel reinforced concrete structure) and bearing-wall structure(box frame type structure) that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results of ANSYS modeling of structures was predicted that the nature natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Rahmen structures compares with bearing-wall structure, nature frequency was predicted low. Measurement results of natural frequency and acceleration level for structures at a standard laboratory, tendency department such as ANSYS modeling appeared. Rahmen structures appeared that reduction effect is less in Acceleration level and heavy impact sound transmission level comparing with bearing-wall structure.

  • PDF

Design and ANSYS Analysis of Disk-type Piezoelectric Transformer (디스크형 압전변압기의 설계 및 유한요소 해석)

  • Jung, Sung-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.813-816
    • /
    • 2004
  • Unipoled piezoelectric transformers were designed with different input and output area ratios. The voltage step-up ratio increased proportionally with increasing the input area. The piezoelectric transformers operated in each transformer's resonance vibration mode. In this paper, ANSYS(FEM program) was used for analysing piezoelectric transformers. We compared with analysis and experimental results. The voltage step-up ratio showed maximum value in output area of small size. Output characteristics of piezoelectric transformers with various size were simulated. The result of analysis showed $2\sim7$ times higher voltage step-up ratio than a experiment result.

  • PDF